Answer:
Option (B)
Explanation:
A lift chart usually refers to a graphical representation that is mainly used in order to improve the drawbacks of a mining model by making a comparison with any random guess, and also helps in determining the changes that occur in terms of lift scores.
It describes the binary classification of the problems associated with the mining activity. This type of chart is commonly used to differentiate the lift scores for a variety of models, and picking the best one out of all.
Thus, the correct answer is option (B).
Answer:
E. Student 1 is correct, because as θ is increased, h is the same.
Explanation:
Here we have the object of a certain mass falling under gravity so the force acting on the it will depend on mass of the object and the acceleration due to gravity.
Mathematically:

As we know that the work done is evaluated as the force applied on a body and the displacement of the body in the direction of the force.
And for work we have:

where:
displacement of the object
angle between the force and displacement vectors
Given that the height of the object is same in each trail of falling object under the gravity be it a free-fall or the incline plane.
- In case of free-fall the angle between the force is and the displacement is zero.
- In case when the body moves along the inclined plane the force applied by the gravity is same because it depends upon the mass of the object. And the net displacement in the direction of the gravitational force is the height of the object which is constant in both the cases.
So, the work done by the gravitational force is same in the two cases.
Answer:

Explanation:
Data provided in the question:
Height above the ground, H= 5.0m
Range of the ball, R= 20 m
Initial horizontal velocity =
Initial vertical velocity=
(Since ball was thrown horizontally only)
Acceleration acting horizontally,
= 0 m/s² [ Since no acceleration acts horizontally) ]
Vertical Acceleration,
= 9.8 m/s² (Since only gravity acts on it)
Let 't' be the time taken to reach ground
Therefore, using equations of motion, we have



Then using Equations of motion for horizontal motion,



Answer:
The forces that do non-zero work on the block are gravity and normal reaction force
Explanation: