Answer:
Explanation:
We need the power equation for this which is
P = Work/time
We have everything we need to solve this (the mass of the object is extra information):
P = 6860/4
P = 1715W
Answer:
t = 8 s
Explanation:
In order to find the time taken by the dragster we will use equations of motion. Here, we will use second equation of motion:
s = Vi t + (1/2)at²
where,
s = distance covered = 320 m
Vi = Initial Velocity = 0 m/s (Since, dragster starts from rest)
t = time taken = ?
a = acceleration of dragster = 10 m/s²
Therefore,
320 m = (0 m/s)t + (1/2)(10 m/s²)t²
t² = (320 m)(2)/(10 m/s²)
t = √(64 s²)
<u>t = 8 s</u>
The Answer Is : D. 20.0 cm
My Reason : These types of problems can all be solved using the lens or mirror equation.
1/20 +1/q= 1/10
q=20 cm
The image is formed behind the lens at 2f or the center of curvature.
It is real, inverted, and the same size as the object
Answer:
0.84μF
Explanation:
Charge is same through both the capacitors since they are in series. Total voltage is the sum of the voltages of the individual capacitors.. So voltage across the 2nd capacitor is 120- 90 =30 V.
Charge across first capacitor is Q = C₁V₁ = 90 x0.28 = 25.2μC
Therefore capacitance of 2nd capacitor =
C₂ = Q÷V₂ = 25.2÷30 = 0.84 μF