Answer:

Explanation:
Given:
Initial mass of isotope (m₀) = 20 g
Half life of the isotope
= (ln 4) years
The general form for the radioactive decay of a radioactive isotope is given as:

Where,

So, the equation is: 
At half-life, the mass is reduced to half of the initial value.
So, at
. Plug in these values and solve for 'k'. This gives,

Hence, the equation for the mass remaining is given as:

Answer:
Explanation:
tangential acceleration at = 3.1 m / s²
angular acceleration = tangential accn / radius
= 3.1 / r , r is radius of the cylinder .
IF N₁ be no of rotation in time t
θ = 1/2 α t² , α is angular acceleration , θ is angle in radian covered in time t
2π N₁ = 1/2 (3.1 / r ) x 2.9²
N₁ = 2.0757 / r
similarly we can calculate
2πN₂ = 1/2 (3.1 / r ) x 10²
N₂ = 24.68 / r
N₂ / N₁ = 11.89
Answer:
average value of the resulting force
Explanation:
The average module value of this resulting force is equivalent to 2.0. 10⁵ N.
The impulse of a force can be calculated by the product of the intensity of the force applied by the time interval in which it is applied -
I = F.Δt
Where,
F = Strength in Newtons
Δt = time interval in seconds
I = Impulse in N.s
The impulse of a force is equivalent to the variation of the amount of movement it causes in the body.
I = ΔQ
The amount of movement is a vector quantity that results from the multiplication of the mass of a body by its speed. Its direction and direction are the same as the velocity vector of the body.
Q = m-V
As the car goes to rest after the application of force, the amount of final movement of the car is equivalent to zero.
I = 0 - mV
F. Δt = - mV
F. 0,1 = - 1000. 20
F = - 20000/0,1
F = 200,000 N
F = 2,0. 10⁵ N
Answer:
(a) 0
(b) 10ML
(c) 
(d) 
Explanation:
(a) When hanging straight down. The child is at the lowest position. His potential energy with respect to this point would also be 0.
(b) Since the rope has length L m. When the rope is horizontal, he is at L (m) high with respect to the lowest swinging position. His potential energy with respect to this point should be

where g = 10m/s2 is the gravitational acceleration.
(c) At angle
from the vertical. Vertically speaking, the child should be at a distance of
to the swinging point, and a vertical distance of
to the lowest position. His potential energy to this point would be:

(d) at angle
from the horizontal. Suppose he is higher than the horizontal line. This would mean he's at a vertical distance of
from the swinging point and higher than it. Therefore his vertical distance to the lowest point is 
His potential energy to his point would be:
