Answer:
Explanation:
cSep 20, 2010
well, since player b is obviously inadequate at athletics, it shows that player b is a woman, and because of this, she would not be able to hit the ball. The magnitude of the initial velocity would therefore be zero.
Anonymous
Sep 20, 2010
First you need to solve for time by using
d=(1/2)(a)(t^2)+(vi)t
1m=(1/2)(9.8)t^2 vertical initial velocity is 0m/s
t=.45 sec
Then you find the horizontal distance traveled by using
v=d/t
1.3m/s=d/.54sec
d=.585m
Then you need to find the time of player B by using
d=(1/2)(a)(t^2)+(vi)t
1.8m=(1/2)(9.8)(t^2) vertical initial velocity is 0
t=.61 sec
Finally to find player Bs initial horizontal velocity you use the horizontal equation
v=d/t
v=.585m/.61 sec
so v=.959m/s
That is False they are actually located in your stomach area
The coefficient of friction between the road and the car's tire is determined as 0.78.
<h3>Acceleration of the car</h3>
The acceleration of the car is calculated as follows;
v² = u² - 2as
0 = u² - 2as
a = u²/2s
where;
- u is the initial velocity = 97 km/h = 26.94 m/s
a = (26.94)²/(2 x 47)
a = 7.72 m/s²
<h3>Coefficient of friction</h3>
μ = a/g
μ = (7.72)/9.8
μ = 0.78
Learn more about coefficient of friction here: brainly.com/question/14121363
#SPJ1
Answer: 117 kPa
Explanation:
For the liquid at depth 3 m, the gauge pressure is equal to = P₁=39 kPa
For the liquid at depth 9m, the gauge pressure is equal to= P₂
Now we are given the condition that the liquid is same. That must imply that the density must be same throughout the depth.
So, For finding gauge pressure we have formula P= ρ * g * h
Also gravity also remains same for both liquids
So taking ratio of their respective pressures we have
=
So =
Or P₂= 39 * 3 = 117 kPa
Answer: Rainfall and temperature can affect the rate in which rocks weather. High temperatures = more rainfall increasing the rate of chemical weathering. Rocks in tropical regions exposed to a lot of rainfall and hot temperatures weather faster than similar rocks in cold, dry climates.
Explanation: