This is a little long, but it gets you there.
- ΔEBH ≅ ΔEBC . . . . HA theorem
- EH ≅ EC . . . . . . . . . CPCTC
- ∠ECH ≅ ∠EHC . . . base angles of isosceles ΔEHC
- ΔAHE ~ ΔDGB ~ ΔACB . . . . AA similarity
- ∠AEH ≅ ∠ABC . . . corresponding angles of similar triangle
- ∠AEH = ∠ECH + ∠EHC = 2∠ECH . . . external angle is equal to the sum of opposite internal angles (of ΔECH)
- ΔDAC ≅ ΔDAG . . . HA theorem
- DC ≅ DG . . . . . . . . . CPCTC
- ∠DCG ≅ ∠DGC . . . base angles of isosceles ΔDGC
- ∠BDG ≅ ∠BAC . . . .corresponding angles of similar triangles
- ∠BDG = ∠DCG + ∠DGC = 2∠DCG . . . external angle is equal to the sum of opposite internal angles (of ΔDCG)
- ∠BAC + ∠ACB + ∠ABC = 180° . . . . sum of angles of a triangle
- (∠BAC)/2 + (∠ACB)/2 + (∠ABC)/2 = 90° . . . . division property of equality (divide equation of 12 by 2)
- ∠DCG + 45° + ∠ECH = 90° . . . . substitute (∠BAC)/2 = (∠BDG)/2 = ∠DCG (from 10 and 11); substitute (∠ABC)/2 = (∠AEH)/2 = ∠ECH (from 5 and 6)
- This equation represents the sum of angles at point C: ∠DCG + ∠HCG + ∠ECH = 90°, ∴ ∠HCG = 45° . . . . subtraction property of equality, transitive property of equality. (Subtract ∠DCG+∠ECH from both equations (14 and 15).)
Answer:
x= 3/8
Step-by-step explanation:
In pic
(hope this helps can I pls have brainlist (crown) ☺️)
17 pounds equals 7711.07 grams a day
I believe the correct answer is 0
Step-by-step explanation:
To solve this question, we use an abbreviation formula called BODMAS which is:
B = Brackets
O = Of
D = Division
M = Multiplication
A = Addition
S = Subtraction
We solve each element that is available in the order of the abbreviated letter.
1. We solve the brackets:

2. We solve the second bracket:

The equation now is 
3. We now solve addition first:

4. Now we solve the subtraction:

The answer then = 0
Let’s write it simply, that helps us solve it easier.
6x^2+4x+8
Now, insert 7 in place of x.
6(7)^2+4(7)+8
Now, multiply.
42^2+28+8
Solve for exponents.
1,764+28+8
Add.
1,792+8
1,800
Hope this helps!