Answer:
y-2=-1/2(x+2)
Step-by-step explanation:
y-y1=m(x-x1)
Answer:
6 packages
Step-by-step explanation:
Since the student needs a total of 3/4 pounds of modeling clay we need to calculate how much is 3/4 of 8 since that is the denominator being used to calculate each individual package of clay. Since 3/4 is equal to 0.75 we can simply multiply this by 8 to calculate the total amount of clay needed.
8 * 0.75 = 6
This means that the student will need 6/8 pounds of clay. Since each package brings 1/8 pounds this means that we would need a total of 6 packages in order to have enough clay.
This is a problem of maxima and minima using derivative.
In the figure shown below we have the representation of this problem, so we know that the base of this bin is square. We also know that there are four square rectangles sides. This bin is a cube, therefore the volume is:
V = length x width x height
That is:

We also know that the <span>bin is constructed from 48 square feet of sheet metal, s</span>o:
Surface area of the square base =

Surface area of the rectangular sides =

Therefore, the total area of the cube is:

Isolating the variable y in terms of x:

Substituting this value in V:

Getting the derivative and finding the maxima. This happens when the derivative is equal to zero:

Solving for x:

Solving for y:

Then, <span>the dimensions of the largest volume of such a bin is:
</span>
Length = 4 ftWidth = 4 ftHeight = 2 ftAnd its volume is:
Answer:
A=2
B=4
C=6
D=5
E=7
F=8
G=3
H=1
Step-by-step explanation:
explanation is in the picture!
Answer:
Option B. A = (5/6)^-⅛
Step-by-step explanation:
From the question given above, we obtained:
(5/6)ˣ = A¯⁸ˣ
We can obtain the value of A as follow:
(5/6)ˣ = A¯⁸ˣ
Cancel x from both side
5/6 = A¯⁸
Recall:
M¯ⁿ = 1/Mⁿ
A¯⁸ = 1/A⁸
Thus,
5/6 = 1/A⁸
Cross multiply
5 × A⁸ = 6
Divide both side by 5
A⁸ = 6/5
Take the 8th root of both sides
A = ⁸√(6/5)
Recall
ⁿ√M = M^1/n
Thus,
⁸√(6/5) = (6/5)^⅛
Therefore,
A = (6/5)^⅛
Recall:
(A/B)ⁿ = (B/A)¯ⁿ
(6/5)^⅛ = (5/6)^-⅛
Therefore,
A = (5/6)^-⅛