Answer:
=759.95 grams.
Explanation:
The molar mass of chromium is 51.9961 g/mol
Therefore the number of moles of chromium in 156 grams is:
Number of moles =mass/RAM
=156g/51.9961g/mol
=3 moles.
From the equation provided, 3 moles of chromium metal produce 2 moles of Chromium oxide.
Therefore 3 moles of chromium produce:
(3×2)/4 moles =1.5 moles of chromium oxide.
I mole of chromium oxide has a mass of 151.99 g
Thus 1.5 moles= 1.5mole ×151.99 g/mol
=759.95 grams.
Answer:
The water potential of a solution of 0.15 M sucrose solution is -3.406 bar.
Explanation:
Water potential = Pressure potential + solute potential


We have :
C = 0.15 M, T = 273.15 K
i = 1
The water potential of a solution of 0.15 m sucrose= 
(At standard temperature)


The water potential of a solution of 0.15 M sucrose solution is -3.406 bar.
In order to form new molecules, a chemical reaction would have to occur which means the change would be a chemical change.
Aluminum has a chemical formula of Al, while diatomic bromine has a chemical formula of Br₂. The balanced chemical reaction is shown below:
<em>2 Al (s) + 3 Br₂ (l) → 2 AlBr₃ (s)</em>
The solid product is called Dibromoaluminum. The stoichiometric coefficients are used to balance the reaction to obey the Law of Conservation of Mass.