Answer:
22 revolutions
Explanation:
2 rev/s = 2*(2π rad/rev) = 12.57 rad/s
The angular acceleration when it starting

The angular acceleration when it stopping:

The angular distance it covers when starting from rest:


The angular distance it covers when coming to complete stop:


So the total angular distance it covers within 22 s is 62.8 + 75.4 = 138.23 rad or 138.23 / (2π) = 22 revolutions
Answer:
F = 2,894 N
Explanation:
For this exercise let's use Newton's second law
F = m a
The acceleration is centripetal
a = v² / r
Angular and linear variables are related.
v = w r
Let's replace
F = m w² r
The radius r and the length of the rope is related
cos is = r / L
r = L cos tea
Let's replace
F = m w² L cos θ
Let's reduce the magnitudes to the SI system
m = 101.7 g (1 kg / 1000g) = 0.1017 kg
θ = 5 rev (2π rad / rev) = 31,416 rad
w = θ / t
w = 31.416 / 5.1
w = 6.16 rad / s
F = 0.1017 6.16² 0.75 cos θ
F = 2,894 cos θ
The maximum value of F is for θ equal to zero
F = 2,894 N
The first collision because a greater amount of momentum must be taken and used in order to push the cart back, giving it a greater mass and impulse
<h2>
Answer: 1.252</h2>
Explanation:
We are given this equation and we need to find the value of
:
(1)
Firstly, we have to clear
:
(2)
Applying<u> Natural Logarithm</u> on both sides of the equation (2):
(3)
(4)
According to the Natural Logarithm rules
, so (4) can be written as:
(5)
Finally: