Step-by-step explanation:
180° = 2x + 70 + 4x + 10
180° = 2x + 4x + 70 + 10
180° = 6x+ 80
180 - 80 = 6x
100 = 6x
6x = 100
x = 16.66
x ≈ 17°
Answer:
Look below.
Step-by-step explanation:
We can use the information provided to plug it into a...
Fomula to find a volume of a cylinder:
V=πr^2h
V=π(10)^2(15)
V≈4712.39ft
A. True. Summing any rational number with an irrational number leads to an irrational result. The proof is a bit lengthy so I'm leaving it out.
B. True. Adding p/q with r/s leads to (ps+qr)/(qs) which is rational. Keep in mind that q and s cannot be zero.
C. False. One counter example is sqrt(3)*sqrt(12) = sqrt(3*12) = sqrt(36) = 6. This shows the product of two irrational numbers, in this case sqrt(3) and sqrt(12), multiplying to get a rational result 6 = 6/1.
D. True. Multiplying p/q and r/s leads to (p*r)/(q*s) which is rational. Keep in mind that q and s cannot be zero.
----------------------------------------------------------------------
The final answer is choice C
Compute the definite integral:
integral_0^1 (5 x + 8)/(x^2 + 3 x + 2) dx
Rewrite the integrand (5 x + 8)/(x^2 + 3 x + 2) as (5 (2 x + 3))/(2 (x^2 + 3 x + 2)) + 1/(2 (x^2 + 3 x + 2)):
= integral_0^1 ((5 (2 x + 3))/(2 (x^2 + 3 x + 2)) + 1/(2 (x^2 + 3 x + 2))) dx
Integrate the sum term by term and factor out constants:
= 5/2 integral_0^1 (2 x + 3)/(x^2 + 3 x + 2) dx + 1/2 integral_0^1 1/(x^2 + 3 x + 2) dx
For the integrand (2 x + 3)/(x^2 + 3 x + 2), substitute u = x^2 + 3 x + 2 and du = (2 x + 3) dx.
This gives a new lower bound u = 2 + 3 0 + 0^2 = 2 and upper bound u = 2 + 3 1 + 1^2 = 6: = 5/2 integral_2^6 1/u du + 1/2 integral_0^1 1/(x^2 + 3 x + 2) dx
Apply the fundamental theorem of calculus.
The antiderivative of 1/u is log(u): = (5 log(u))/2 right bracketing bar _2^6 + 1/2 integral_0^1 1/(x^2 + 3 x + 2) dx
Evaluate the antiderivative at the limits and subtract.
(5 log(u))/2 right bracketing bar _2^6 = (5 log(6))/2 - (5 log(2))/2 = (5 log(3))/2: = (5 log(3))/2 + 1/2 integral_0^1 1/(x^2 + 3 x + 2) dx
For the integrand 1/(x^2 + 3 x + 2), complete the square:
= (5 log(3))/2 + 1/2 integral_0^1 1/((x + 3/2)^2 - 1/4) dx
For the integrand 1/((x + 3/2)^2 - 1/4), substitute s = x + 3/2 and ds = dx.
This gives a new lower bound s = 3/2 + 0 = 3/2 and upper bound s = 3/2 + 1 = 5/2: = (5 log(3))/2 + 1/2 integral_(3/2)^(5/2) 1/(s^2 - 1/4) ds
Factor -1/4 from the denominator:
= (5 log(3))/2 + 1/2 integral_(3/2)^(5/2) 4/(4 s^2 - 1) ds
Factor out constants:
= (5 log(3))/2 + 2 integral_(3/2)^(5/2) 1/(4 s^2 - 1) ds
Factor -1 from the denominator:
= (5 log(3))/2 - 2 integral_(3/2)^(5/2) 1/(1 - 4 s^2) ds
For the integrand 1/(1 - 4 s^2), substitute p = 2 s and dp = 2 ds.
This gives a new lower bound p = (2 3)/2 = 3 and upper bound p = (2 5)/2 = 5:
= (5 log(3))/2 - integral_3^5 1/(1 - p^2) dp
Apply the fundamental theorem of calculus.
The antiderivative of 1/(1 - p^2) is tanh^(-1)(p):
= (5 log(3))/2 + (-tanh^(-1)(p)) right bracketing bar _3^5
Evaluate the antiderivative at the limits and subtract. (-tanh^(-1)(p)) right bracketing bar _3^5 = (-tanh^(-1)(5)) - (-tanh^(-1)(3)) = tanh^(-1)(3) - tanh^(-1)(5):
= (5 log(3))/2 + tanh^(-1)(3) - tanh^(-1)(5)
Which is equal to:
Answer: = log(18)
Loan amount, P = 225000
interest = 5.5%/12 per month
Monthly payment, A = 1000
At the end of 30 years,
Future value of loan (with zero repayment)
F1=225000*(1+.055/12)^(30*12)
=1167162.264
Future value of repayment, A=1000 per month
F2=

=

=913611.893
Therefore balloon payment
= F1-F2
=1167162.264-913611.893
=
253550.37 (to the nearest cent)