Answer:
Step-by-step explanation:
Answer:
the parabola can be written as:
f(x) = y = a*x^2 + b*x + c
first step.
find the vertex at:
x = -b/2a
the vertex will be the point (-b/2a, f(-b/2a))
now, if a is positive, then the arms of the parabola go up, if a is negative, the arms of the parabola go down.
The next step is to see if we have real roots by using the Bhaskara's equation:

Now, draw the vertex, after that draw the values of the roots in the x-axis, and now conect the points with the general draw of the parabola.
If you do not have any real roots, you can feed into the parabola some different values of x around the vertex
for example at:
x = (-b/2a) + 1 and x = (-b/2a) - 1
those two values should give the same value of y, and now you can connect the vertex with those two points.
If you want a more exact drawing, you can add more points (like x = (-b/2a) + 3 and x = (-b/2a) - 3) and connect them, as more points you add, the best sketch you will have.
The larger the number of simulations the more likely are the results to be closest to those predicted by the probability theory.
When large number of simulations are run, some results might be higher than the results of probability theory, some results might be lower than the results of the probability theory and some might be exactly the same. So the average of all these results will be close to the results of Probability Theory. Thus, more the number of simulations, greater is the chance that the results are closer to those of simulation theory.
Thus, option A will be the correct answer.
Answer:
the third option
Step-by-step explanation:
hope this helps! have a good day and stay safe!
Answer:
1) AD=BC(corresponding parts of congruent triangles)
2)The value of x and y are 65 ° and 77.5° respectively
Step-by-step explanation:
1)
Given : AD||BC
AC bisects BD
So, AE=EC and BE=ED
We need to prove AD = BC
In ΔAED and ΔBEC
AE=EC (Given)
( Vertically opposite angles)
BE=ED (Given)
So, ΔAED ≅ ΔBEC (By SAS)
So, AD=BC(corresponding parts of congruent triangles)
Hence Proved
2)
Refer the attached figure

In ΔDBC
BC=DC (Given)
So,
(Opposite angles of equal sides are equal)
So,
So,
(Angle sum property)
x+x+50=180
2x+50=180
2x=130
x=65
So,
Now,

So,
In ΔABD
AB = BD (Given)
So,
(Opposite angles of equal sides are equal)
So,
So,
(Angle Sum property)
y+y+25=180
2y=180-25
2y=155
y=77.5
So, The value of x and y are 65 ° and 77.5° respectively