Answer:
The probability that she will not get a hit until her fourth time at bat in a game is 0.103
Step-by-step explanation:
Previous concepts
The geometric distribution represents "the number of failures before you get a success in a series of Bernoulli trials. This discrete probability distribution is represented by the probability density function:"
Let X the random variable that measures the number os trials until the first success, we know that X follows this distribution:
Solution to the problem
For this case we want this probability

And using the probability mass function we got:
The probability that she will not get a hit until her fourth time at bat in a game is 0.103
Answer:
i think the second answer
Step-by-step explanation:
Answer:
x > 5
Step-by-step explanation:
Given that:
= -2(3x + 2) > -8x + 6
(negative sign before bracket will alter the internal signs when multiplied by each term)
= -6x - 4 > -8x +6
Taking x terms on left side and other constants on right side
= -6x + 8x > 6 +4
Signs will be changer for transferred terms
= 2x > 10
By Dividing both sides 2 we get
=x > 10/2
= x >5
Answer:
3. r = -8
4. x = -5
General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Equality Properties
Step-by-step explanation:
<u>Step 1: Define equation</u>
2(-5r + 2) = 84
<u>Step 2: Solve for </u><em><u>r</u></em>
- Divide 2 on both sides: -5r + 2 = 42
- Subtract 2 on both sides: -5r = 40
- Divide -5 on both sides: r = -8
<u>Step 3: Check</u>
<em>Plug in r into the original equation to verify it's a solution.</em>
- Substitute in <em>r</em>: 2(-5(-8) + 2) = 84
- Multiply: 2(40 + 2) = 84
- Add: 2(42) = 84
- Multiply: 84 = 84
Here we see that 84 does indeed equal 84.
∴ r = -8 is a solution of the equation.
<u>Step 4: Define equation</u>
264 = -8(-8 + 5x)
<u>Step 5: Solve for </u><em><u>x</u></em>
- Divide both sides by -8: -33 = -8 + 5x
- Add 8 to both sides: -25 = 5x
- Divide 5 on both sides: -5 = x
- Rewrite: x = -5
<u>Step 6: Check</u>
<em>Plug in x into the original equation to verify it's a solution.</em>
- Substitute in<em> x</em>: 264 = -8(-8 + 5(-5))
- Multiply: 264 = -8(-8 - 25)
- Subtract: 264 = -8(-33)
- Multiply: 264 = 264
Here we see that 264 does indeed equal 264.
∴ x = -5 is a solution of the equation.
Answer:
$8.00
Step-by-step explanation:
The problem statement gives two relations between the prices of two kinds of tickets. These can be used to write a system of equations for the ticket prices.
__
<h3>setup</h3>
Let 'a' and 'c' represent the prices of adult and children's tickets, respectively. The given relations can be expressed as ...
a - c = 1.50 . . . . . . . adult tickets are $1.50 more
175a +325c = 3512.5 . . . . . total revenue from ticket sales.
__
<h3>solution</h3>
We are only interested in the price of an adult ticket, so we can eliminate c to give one equation we can solve for 'a'. Using the first equation, an expression for c is ...
c = a -1.50
Substituting that into the second equation, we have ...
175a +325(a -1.50) = 3512.50
500a -487.50 = 3512.50 . . . . . . simplify
500a = 4000 . . . . . . add 487.50
a = 8 . . . . . . . . . divide by 500
An adult ticket costs $8.