1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
trapecia [35]
3 years ago
14

2.48 rounded to the nearest cent

Mathematics
2 answers:
aleksklad [387]3 years ago
8 0

Answer:

2

Step-by-step explanation:

.48 rounds down

.5 rounds up

Aneli [31]3 years ago
8 0

Answer:

2.4 as a decimal , 248 as a percent (248%)

Step-by-step explanation:

You might be interested in
Is -100 rational or irational
pychu [463]

-100 is rational.

-100 can be turned into a fraction by doing the following...

Just put 1 underneath -100 and you get \frac{-100}{1}

So that means it is rational since it can be a fraction!

4 0
3 years ago
After 2 years, Deion earned $270 in simple interest from a CD into which he initially deposited $6000. What was the annual inter
shusha [124]
I=prt
When I want to find the rate
r=I/pt so
R=(270/6000*2)*100==2.25%
6 0
3 years ago
Read 2 more answers
Determine whether 4 is a solution of the equation 9x+7=40.<br> Is 4 a​ solution?
Allisa [31]

Plug in 4 for x

9(4) + 7 = 40

36 + 7 = 40

43 ≠ 40

No, 4 is not a solution

hope this helps

5 0
4 years ago
Read 2 more answers
Determine formula of the nth term 2, 6, 12 20 30,42​
nalin [4]

Check the forward differences of the sequence.

If \{a_n\} = \{2,6,12,20,30,42,\ldots\}, then let \{b_n\} be the sequence of first-order differences of \{a_n\}. That is, for n ≥ 1,

b_n = a_{n+1} - a_n

so that \{b_n\} = \{4, 6, 8, 10, 12, \ldots\}.

Let \{c_n\} be the sequence of differences of \{b_n\},

c_n = b_{n+1} - b_n

and we see that this is a constant sequence, \{c_n\} = \{2, 2, 2, 2, \ldots\}. In other words, \{b_n\} is an arithmetic sequence with common difference between terms of 2. That is,

2 = b_{n+1} - b_n \implies b_{n+1} = b_n + 2

and we can solve for b_n in terms of b_1=4:

b_{n+1} = b_n + 2

b_{n+1} = (b_{n-1}+2) + 2 = b_{n-1} + 2\times2

b_{n+1} = (b_{n-2}+2) + 2\times2 = b_{n-2} + 3\times2

and so on down to

b_{n+1} = b_1 + 2n \implies b_{n+1} = 2n + 4 \implies b_n = 2(n-1)+4 = 2(n + 1)

We solve for a_n in the same way.

2(n+1) = a_{n+1} - a_n \implies a_{n+1} = a_n + 2(n + 1)

Then

a_{n+1} = (a_{n-1} + 2n) + 2(n+1) \\ ~~~~~~~= a_{n-1} + 2 ((n+1) + n)

a_{n+1} = (a_{n-2} + 2(n-1)) + 2((n+1)+n) \\ ~~~~~~~ = a_{n-2} + 2 ((n+1) + n + (n-1))

a_{n+1} = (a_{n-3} + 2(n-2)) + 2((n+1)+n+(n-1)) \\ ~~~~~~~= a_{n-3} + 2 ((n+1) + n + (n-1) + (n-2))

and so on down to

a_{n+1} = a_1 + 2 \displaystyle \sum_{k=2}^{n+1} k = 2 + 2 \times \frac{n(n+3)}2

\implies a_{n+1} = n^2 + 3n + 2 \implies \boxed{a_n = n^2 + n}

6 0
2 years ago
Find the quotient 7.4 ÷ 2647.72 *<br> 3578<br> 358<br> 357.8<br> 35.78
hoa [83]

Answer:

The answer is C. 357.8

Step-by-step explanation:

Math

Way

App

3 0
3 years ago
Other questions:
  • What is the solution (using substitution) of the following equations? 2x+y=20 6x-5y=12
    13·1 answer
  • A pyramid can be a prism true or false?
    6·1 answer
  • What is the area of ALP? <br> Answer in the box <br> I’ve tried but i didn’t get the right answer
    5·1 answer
  • What number is three tenths less than 1?
    12·2 answers
  • WILL GIVE BRAINLIEST!!
    7·1 answer
  • Please explain how to solve for x in the attached photo.
    8·1 answer
  • What is the surface area of the triangular prism shown
    9·1 answer
  • A population grows according to an exponential growth model. The initial population is 215 and the population after one year is
    8·1 answer
  • Which of the following is a common multiple of 6, 9, and 12?
    11·2 answers
  • If there are 50 trees in 4 acres of land. how many are there in 10 acres of land​
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!