Answer:
0.7μM = 0.6 μM = 0.5 μM > 0.4 μM > 0.3 μM > 0.2 μM
Explanation:
An enzyme solution is saturated when all the active sites of the enzyme molecule are full. When an enzyme solution is saturated, the reaction is occurring at the maximum rate.
From the given information, an enzyme concentration of 1.0 μM Y can convert a maximum of 0.5 μM AB to the products A and B per second means that a 1.0 M Y solution is saturated when an AB concentration of 0.5 M or greater is present.
The addition of more substrate to a solution that contains the enzyme required for its catalysis will generally increase the rate of the reaction. However, if the enzyme is saturated with substrate, the addition of more substrate will have no effect on the rate of reaction.
<em>Therefore the reaction rates at substrate concentrations of 0.7μM, 0.6 μM, and 0.5 μM are equal. But the reaction rate at substrate concentrations of 0.2 μM is lower than at 0.3 μM, 0.3 μM is lower than 0.4 μM and 0.4 μM is lower than 0.5 μM, 0.6 μM and 0.7 μM.</em>
Answer:
Quasars inhabit the centers of active galaxies and are among the most luminous, powerful, and energetic objects known in the universe, emitting up to a thousand times the energy output of the Milky Way, which contains 200–400 billion stars.
Explanation:
sorry if im wrong
Answer
<h2>If no of proton is 3</h2><h2 /><h2>Then atomic no. Is3</h2><h2 /><h2>Therefore it is Li</h2><h2 /><h2>Mass no. Of li = 7</h2>
Explanation:
<u>HOPE</u><u> IT</u><u> HELPS</u>
Answer:
C is the answer.
Explanation:
A solvent is a substance that becomes a solution by dissolving a solid, liquid, or gaseous solute. A solvent is usually a liquid, but can also be a solid or gas. The most common solvent in everyday life is water. Most other commonly-used solvents are organic (carbon-containing) chemicals.
Answer:
o increase the rate of chemical reaction
Explanation:
Enzymes are chemical catalysts that speed up chemical reactions by lowering their activation energy. Enzymes have an active site with a unique chemical environment that fits particular chemical reactants for that enzyme, called substrates. Enzymes and substrates are thought to bind according to an induced-fit model.