Answer:
6.9 ml of concentrate
Explanation:
100 ml of .1 M will require .01 moles
from a 1.45 M solution, .01 mole would be
.01 mole / ( 1.45 mole / liter) = 6.9 ml of the concentrate then dilute to 100 ml
If the mass of all of the products in a chemical reaction is equal to 100g then the mass of the reactants in that same reaction had to have had a mass of 100g this is due to the law of conservation of matter stating matter cannot be created or destroyed in a chemical reaction.
Answer:

Explanation:
Hello,
In this case, for a first-order reaction, we can firstly compute the rate constant from the given half-life:

In such a way, the integrated first-order law, allows us to compute the final mass of the substance once 10.0 minutes (600 seconds) have passed:

Best regards.
1. Determine if the ionic substances can break apart into ions.
- e.g. CaCO3 isn't very soluble, do it can't dissolve and dissociate. If it can't pop apart, no ions.
2. Swap the partners for all the other ions that you can get from step 1. You can skip pairings with the same charge - a + can't get close to another + to react.
3. Use solubility, acid/base, and redox rules to see if anything will happen with the ions in solution.<span />