Energy levels inside an atom are the specific energies that electrons can have when occupying specific orbitals.
Answer:
Volume in L = 0.50 L
Explanation:
Given data:
Molarity of solution = 0.1850 M
Mass of BaCl₂ = 19.30 g
Volume of solution = ?
Solution:
First of all we will calculate the number of moles of solute:
Number of moles = mass/molar mass
Molar mass of BaCl₂ = 208.23 g/mol
Number of moles = 19.30 g / 208.23 g/mol
Number of moles = 0.093 mol
Volume of solution:
Molarity = number of moles of solute / volume of solution in L
0.1850 M = 0.093 mol / Volume in L
Volume in L = 0.093 mol / 0.1850 M (M= mol/L)
Volume in L = 0.50 L
Answer:
B) 125 mL
Explanation:
M1V1=M2V2
(0.120M)(x)=(150.0 mL)(0.100M)
x= 125 mL
*Text me at 561-400-5105 for private tutoring if interested: I can do homework, labs, and other assignments :)
Answer:
Which elements have a larger atomic radius?
Atomic radii vary in a predictable way across the periodic table. As can be seen in the figures below, the atomic radius increases from top to bottom in a group, and decreases from left to right across a period. Thus, helium is the smallest element, and francium is the largest.
Explanation: