Answer:
0.032 mole
Explanation:
Please mark me as brainliest
Answer:
10−8 M.
Explanation:
In this problem we are given pH and asked to solve for the hydrogen ion concentration. Using the equation, pH = − log [H+] , we can solve for [H+] as,
− pH = log [H+] ,
[H+] = 10−pH,
by exponentiating both sides with base 10 to "undo" the common logarithm. The hydrogen ion concentration of blood with pH 7.4 is,
[H+] = 10−7.4 ≈ 0.0000040 = 4.0 × In this problem we are given pH and asked to solve for the hydrogen ion concentration. Using the equation, pH = − log [H+] , we can solve for [H+] as,
− pH = log [H+] ,
[H+] = 10−pH,
by exponentiating both sides with base 10 to "undo" the common logarithm. The hydrogen ion concentration of blood with pH 7.4 is,
[H+] = 10−7.4 ≈ 0.0000040 = 4.0 × 10−8 M.
It's 1 because there is only one electron on the outer shell.
<u>Answer:</u>
<em>The situation given here is imaginary such that the life of Rock has to be found using the half-life of the element lokium that has been found inside the rock. </em>
<u>Explanation:</u>
Half-life of any material is the amount of time taken by that particular material to decay. Now the amount of lokium found in rock can show after how many half-lives this amount has been left out.
The time elapsed will be log (L) atoms X half-life.
Answer:
27.6mL of LiOH 0.250M
Explanation:
The reaction of lithium hydroxide (LiOH) with chlorous acid (HClO₂) is:
LiOH + HClO₂ → LiClO₂ + H₂O
<em>That means, 1 mole of hydroxide reacts per mole of acid</em>
Moles of 20.0 mL = 0.0200L of 0.345M chlorous acid are:
0.0200L ₓ (0.345mol / L) = <em>6.90x10⁻³ moles of HClO₂</em>
To neutralize this acid, you need to add the same number of moles of LiOH, that is 6.90x10⁻³ moles. As the LiOH contains 0.250 moles / L:
6.90x10⁻³ moles ₓ (1L / 0.250mol) = 0.0276L of LiOH =
<h3>27.6mL of LiOH 0.250M</h3>