Because if you have a liquid then you need a glass to keep it together and when it is a solid it is already together so you don't need to do anything
<span>A compound is found to be 40.0% carbon, 6.7% hydrogen and 53.5% oxygen. Its molecular mass is 60. g/mol.
</span>Q1)
Empirical formula is the simplest ratio of whole numbers of components making up a compound.
the percentages have been given, therefore we can calculate for 100 g of the compound.
C H O
Mass in 100 g 40.0 g 6.7 g 53.5 g
Molar mass 12 g/mol 1 g/mol 16 g/mol
Number of moles 40.0/12= 3.33 6.7/1 = 6.7 53.5/16 = 3.34
Divide by the least number of moles
3.33/3.33 = 1 6.7/3.33 = 2.01 3.34/3.33 = 1.00
after rounding off
C - 1
H - 2
O - 1
Empirical formula - CH₂O
Q2)
Molecular formula is the actual number of components making up the compound.
To find the number of empirical units we have to find the mass of one empirical unit.
Mass of one empirical unit = CH₂O - 12 + (1x2) + 16 = 30 g
Mass of one mole of compound = 60 g
Number of empirical units = 60 g / 30 g = 2
Therefore molecular formula - 2(CH₂O)
Molecular formula - C₂H₄O₂
Answer:
HELIUM IS HE ANSWER
Explanation:
<em>G</em><em>O</em><em>O</em><em>D</em><em> </em><em>LUCK</em>
Answer:
atoms of hydrogen are there in
35.0 grams of hydrogen gas.
Explanation:
According to avogadro's law, 1 mole of every substance occupies 22.4 L at STP and contains avogadro's number
of particles.
To calculate the moles, we use the equation:
1 mole of hydrogen
=
atoms
17.5 mole of hydrogen
=
atoms
There are
atoms of hydrogen are there in
35.0 grams of hydrogen gas.
Answer:
The attractive forces must be overcome are :
Explanation:
For the compound to dissolve the attractive forces existing between atoms of the compound must be reduced
<u>CsI is ionic compound </u><em>and its molecules are held together by ionic(electrostatic) force . These force must be weakened for its dissolution</em>
Forces in HF <em>:</em>
<em>1 .Hydrogen Bonding : In HF strong intermolecular Hydrogen Bonding exist between the electronegative F and Hydrogen</em>
2. Dipole - dipole : <em>HF is polar . So it is a permanent dipole and has dipole diople interaction</em>