Answer:
See Explanation
Explanation:
Let us consider the first two reactions, the initial concentration of CO was held constant and the concentration of Hbn was doubled.
2.68 * 10^-3/1.34 * 10^-3 = 6.24 * 10^-4/3.12 * 10^-4
2^1 = 2^1
The rate of reaction is first order with respect to Hbn
Let us consider the third and fourth reactions. The concentration of Hbn is held constant and that of CO was tripled.
1.5 * 10^-3/5 * 10^-4 = 1.872 * 10^-3/6.24 * 10^-4
3^1 = 3^1
The reaction is also first order with respect to CO
b) The overall order of reaction is 1 + 1=2
c) The rate equation is;
Rate = k [CO] [Hbn]
d) 3.12 * 10^-4 = k [5 * 10^-4] [1.34 * 10^-3]
k = 3.12 * 10^-4 /[5 * 10^-4] [1.34 * 10^-3]
k = 3.12 * 10^-4/6.7 * 10^-7
k = 4.7 * 10^2 mmol-1 L s-1
e) The reaction occurs in one step because;
1) The rate law agrees with the experimental data.
2) The sum of the order of reaction of each specie in the rate law gives the overall order of reaction.
Answer:
It would Newton's third law.
Explanation:
2K2MnO4 + Cl2 -------> 2KMnO4 + 2KCl
Notice that each reactant is made up of two elements. To predict the products, all you have to do is interchange the combination of the two reactants while taking note that metal comes first, followed by nonmetals. With that being said, the reaction would be:
CaC₂ + 2 H₂O --> C₂H₂ + Ca(OH)₂
<em>So, the answer is C₂H₂.</em>
Answer:
Mass, m = 19466.7 kg
Explanation:
Given that,
Portland cement concrete (PCC) has a density of 150 lb/ft³
We need to find how many kilograms of PCC are required to cast a cylindrical column 1.15 m in diameter and 7.8 m in height.
Since, 1 kg = 2.205 lb
1 lb/ft³ = 16.018 kg/m³
150 lb/ft³ = 2402.77 kg/m³
Density, 
m is mass of PCC in kg and V is volume of cylinder


So, the mass of PCC required is 19466.7 kg.