The correct answer is <span>D) centrifuge the mixture because the substance with the highter density will be pulled to the bottom
When things spin around, like a centrifuge, the centripetal force draws things towards the middle. If you make it a bit like a spiral and put it sideways, then the denser thing will go to the bottom while the less dense ones will remain on the outside. </span>
To balance a chemical equation, you want the same amount of elements to equal the same on both sides.
Step1. Write equation out
[CH4 + Cl2 ---> CCl4 + HCl]
C:1; H:4; Cl:2 C:1; H:1; CL:5 /// Cl = 5 since 4Cl + 1Cl
The Carbon element is balanced, but Hydrogen isn't.
So to balance it we will add a coefficient behind HCl, so now
[CH4 + Cl2 ------> CCl4 + 4HCL]
C:1; H:4; Cl:2 C:1; H:4; CL:8 ///// Carbon and hydrogen are balanced, but now Chlorine is not. Now we balance that element by addind a coefficiant behind CL2////
[CH4 + 4Cl2 -----> CCl4 + 4HCl]
C:1; H:4; Cl:8 C:1; H:4; CL:8 ///// So now that we added a 4*Cl2, it equals to Cl:8. So now what most people want to see is if every element is at its lowest balance, so we see if we can any coefficient lower. Just like simplifying if possible.
Answer:
i guss c is answer in my ......
Instability
Explanation:
Isotopes decays because they are unstable. Stable isotopes do not decay.
- For every atomic nucleus, there is a specific neutron/proton ratio.
- This ratio ensure that a nuclide is stable.
- For example, fluorine F, is 10/9 stable.
- Any nucleus with a neutron/proton combination different from its stability ratio either too many neutrons or too many protons will become unstable.
- Such nuclide will split into one or more other nuclei with the emission of small particles of matter and considerable amount of energy.
Learn more:
Radioactive brainly.com/question/10125168
#learnwithBrainly
A mixture can be classified as a solution, suspension or colloid based on the SIZE OF ITS LARGEST PARTICLES.
A solution is made up of small particles that can not be seen with the naked eyes. The particles of of a suspension are larger and can be seen with the naked eyes. The particle size of the colloid is not as small as that of a solution and not as big as that of a suspension.