ANSWER:
London dispersion and hydrogen bonds.
EXPLANATION :
Every molecule experiences London dispersion as an intermolecular force.since the ammonia ion has hydrogen atoms bonded to nitrogen,a very electronegative atom,the molecule is also polar since the nitrogen atom more strongly pulls on the electrons from the hydrogen atoms than the hydrogens themselves do.
This effect is similar to that water,where the oxygen pulls the electrons of the hydrogen atoms with a greater magnitude,resulting in the oxygen having a partial negative charge and the hydrogens having a partial positive charge relative to each other.
This polarity shows that the molecule has dipole-dipole intermolecular forces but since the polarity is from a result of highly electronegative atoms (such as nitrogen,oxygen,fluorine) and hydrogen atoms actually bonded to them,the polarity is categorized in it's own intermolecular force called a hydrogen bond.
I HOPE IT HELPS:)
Answer:
By comparing the bonds between C-H and O-H, the O-H bond has the greatest degree of polarity.
Explanation:
Based on bond electronegative values which is a measure of the ability of a atom in a chemical bond to pull the shared electrons closer to its self.
The electronegativity of an element characterizes the elements chemical reaction.
From the available bonds
Oxygen has an electronegativity value of 3.44 and Carbon 2.55, while Hydrogen has an electronegativity value of 2.20
Therefore the bond between carbon and hydrogen is much less polar than between oxygen and hydrogen.
The bond between oxygen and hydrogen has the greatest polarity.
Answer:
The center of an Atom is called the Nucleus.
Explanation:
Answer: +178.3 kJ
Explanation:
The chemical equation follows:

The equation for the enthalpy change of the above reaction is:
![\Delta H^o_{rxn}=[(1\times \Delta H^o_f_{(CaO(s))})+(1\times \Delta H^0f_{CO_2}]-[(1\times \Delta H^o_f_{(CaCO_3(s))})]](https://tex.z-dn.net/?f=%5CDelta%20H%5Eo_%7Brxn%7D%3D%5B%281%5Ctimes%20%5CDelta%20H%5Eo_f_%7B%28CaO%28s%29%29%7D%29%2B%281%5Ctimes%20%5CDelta%20H%5E0f_%7BCO_2%7D%5D-%5B%281%5Ctimes%20%5CDelta%20H%5Eo_f_%7B%28CaCO_3%28s%29%29%7D%29%5D)
We are given:

Putting values in above equation, we get:
![\Delta H^o_{rxn}=[(1\times (-635.1))+(1\times (-393.5))]-[(1\times (-1206.9))]](https://tex.z-dn.net/?f=%5CDelta%20H%5Eo_%7Brxn%7D%3D%5B%281%5Ctimes%20%28-635.1%29%29%2B%281%5Ctimes%20%28-393.5%29%29%5D-%5B%281%5Ctimes%20%28-1206.9%29%29%5D)
The DH°rxn for the decomposition of calcium carbonate to calcium oxide and carbon dioxide is +178.3 kJ