To solve this we assume
that the gas is an ideal gas. Then, we can use the ideal gas equation which is
expressed as PV = nRT. At a constant temperature and number of moles of the gas
the product of PV is equal to some constant. At another set of condition of
temperature, the constant is still the same. Calculations are as follows:
P1V1 =P2V2
<span>P2 = P1V1/V2</span>
<span>
</span>
<span>The correct answer is the first option. Pressure would increase. This can be seen from the equation above where V2 is indirectly proportional to P2.</span>
Answer:
It makes the pasta to get hot faster and boil quicker.
Explanation:
Adding salt to water actually raises the boiling point of the water, due to a phenomenon called boiling point elevation. Essentially, adding any non-volatile solute such as salt to a liquid causes a decrease in the liquid’s vapour pressure. A liquid boils when the vapour pressure above it equals atmospheric pressure, so a lower vapour pressure means you need a higher temperature to boil the water. The reason salt makes water boil faster has to do with specific heat capacities, or the energy it takes to raise the temperature of a substance. Salt ions dissolved in water bind to water molecules, holding them stable and making it harder for them to move around. As a result, the non-salt bound water molecules receive more of the energy provided by the stove, and therefore they get hot faster and boil quicker.