
Solve the following using Substitution method
2x – 5y = -13
3x + 4y = 15


- To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.

- Choose one of the equations and solve it for x by isolating x on the left-hand side of the equal sign. I'm choosing the 1st equation for now.

- Add 5y to both sides of the equation.


- Multiply
times 5y - 13.

- Substitute
for x in the other equation, 3x + 4y = 15.

- Multiply 3 times
.

- Add
to 4y.

- Add
to both sides of the equation.

- Divide both sides of the equation by 23/2, which is the same as multiplying both sides by the reciprocal of the fraction.

- Substitute 3 for y in
. Because the resulting equation contains only one variable, you can solve for x directly.


- Add
to
by finding a common denominator and adding the numerators. Then reduce the fraction to its lowest terms if possible.

- The system is now solved. The value of x & y will be 1 & 3 respectively.

Answer:
the answer is 7/30 (answer is .23 repeating)
Answer:
k = 1/2
Step-by-step explanation:
-4k-2(k)-2(-3)=-6k+8
-4k-2k+6=-6k+8
-2k+6=-6k+8
4k+6=8
4k=2
4k/4= 2/4
k=1/2
Answer:
t/8 + t/7 = 1
Step-by-step explanation:
Given in the question that,
time require for Jose to paint the house = 7 hours
time require for Brandon to paint the house = 8 hours
Suppose t means Full house painted.
<h3>
To solve the question we have to figure out how much each of them can paint in ONE hour.</h3>
7 hours----t
1 hour ---- t/7
8 hours----t
1 hour ---- t/8
<h3>
Equation</h3>
t/8 + t/7 = 1 (in one hour)
(7t + 8t)/8(7) = 1
15t/56 = 1
15t = 56
t = 56/15
t = 3.73 hours