1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
inessss [21]
2 years ago
12

What the heck, none of this makes sense to me

Mathematics
1 answer:
Natasha_Volkova [10]2 years ago
3 0

Answer:

45

Step-by-step explanation:

You might be interested in
a video store took in $5,375 in DVD rentals during july. January sales are expected to be double that amount. If DVDs rent for $
k0ka [10]
I think the answer would be $2,678.6
5 0
3 years ago
Please help and also include an explanation so I know how you got the answer.
Nastasia [14]

Answer:

x = 15

Step-by-step explanation:

We know that 4x° + 8x° make a straight angle of 180°.

4x° + 8x° = 180°

12x° = 180°

12x = 180

x = 180/12 = 15

4 0
2 years ago
Read 2 more answers
Can someone check whether its correct or no? this is supposed to be the steps in integration by parts​
Gwar [14]

Answer:

\displaystyle - \int \dfrac{\sin(2x)}{e^{2x}}\: \text{d}x=\dfrac{\sin(2x)}{4e^{2x}}+\dfrac{\cos(2x)}{4e^{2x}}+\text{C}

Step-by-step explanation:

\boxed{\begin{minipage}{5 cm}\underline{Integration by parts} \\\\$\displaystyle \int u \dfrac{\text{d}v}{\text{d}x}\:\text{d}x=uv-\int v\: \dfrac{\text{d}u}{\text{d}x}\:\text{d}x$ \\ \end{minipage}}

Given integral:

\displaystyle -\int \dfrac{\sin(2x)}{e^{2x}}\:\text{d}x

\textsf{Rewrite }\dfrac{1}{e^{2x}} \textsf{ as }e^{-2x} \textsf{ and bring the negative inside the integral}:

\implies \displaystyle \int -e^{-2x}\sin(2x)\:\text{d}x

Using <u>integration by parts</u>:

\textsf{Let }\:u=\sin (2x) \implies \dfrac{\text{d}u}{\text{d}x}=2 \cos (2x)

\textsf{Let }\:\dfrac{\text{d}v}{\text{d}x}=-e^{-2x} \implies v=\dfrac{1}{2}e^{-2x}

Therefore:

\begin{aligned}\implies \displaystyle -\int e^{-2x}\sin(2x)\:\text{d}x & =\dfrac{1}{2}e^{-2x}\sin (2x)- \int \dfrac{1}{2}e^{-2x} \cdot 2 \cos (2x)\:\text{d}x\\\\& =\dfrac{1}{2}e^{-2x}\sin (2x)- \int e^{-2x} \cos (2x)\:\text{d}x\end{aligned}

\displaystyle \textsf{For }\:-\int e^{-2x} \cos (2x)\:\text{d}x \quad \textsf{integrate by parts}:

\textsf{Let }\:u=\cos(2x) \implies \dfrac{\text{d}u}{\text{d}x}=-2 \sin(2x)

\textsf{Let }\:\dfrac{\text{d}v}{\text{d}x}=-e^{-2x} \implies v=\dfrac{1}{2}e^{-2x}

\begin{aligned}\implies \displaystyle -\int e^{-2x}\cos(2x)\:\text{d}x & =\dfrac{1}{2}e^{-2x}\cos(2x)- \int \dfrac{1}{2}e^{-2x} \cdot -2 \sin(2x)\:\text{d}x\\\\& =\dfrac{1}{2}e^{-2x}\cos(2x)+ \int e^{-2x} \sin(2x)\:\text{d}x\end{aligned}

Therefore:

\implies \displaystyle -\int e^{-2x}\sin(2x)\:\text{d}x =\dfrac{1}{2}e^{-2x}\sin (2x) +\dfrac{1}{2}e^{-2x}\cos(2x)+ \int e^{-2x} \sin(2x)\:\text{d}x

\textsf{Subtract }\: \displaystyle \int e^{-2x}\sin(2x)\:\text{d}x \quad \textsf{from both sides and add the constant C}:

\implies \displaystyle -2\int e^{-2x}\sin(2x)\:\text{d}x =\dfrac{1}{2}e^{-2x}\sin (2x) +\dfrac{1}{2}e^{-2x}\cos(2x)+\text{C}

Divide both sides by 2:

\implies \displaystyle -\int e^{-2x}\sin(2x)\:\text{d}x =\dfrac{1}{4}e^{-2x}\sin (2x) +\dfrac{1}{4}e^{-2x}\cos(2x)+\text{C}

Rewrite in the same format as the given integral:

\displaystyle \implies - \int \dfrac{\sin(2x)}{e^{2x}}\: \text{d}x=\dfrac{\sin(2x)}{4e^{2x}}+\dfrac{\cos(2x)}{4e^{2x}}+\text{C}

5 0
2 years ago
A line is graphed in the coordinate plane and two slope triangles are shown
aniked [119]
If you could post the picture I can help
3 0
3 years ago
To= 2nt} find the value of ts.​
RSB [31]

Is this some sort of cryptic message?

☺☺☺☺☺☺☺☺☺☺☺☺☺☺

4 0
3 years ago
Other questions:
  • Jordan paid $11.20 for 5 pears and 6 peaches.The cost of 3 prears is as much as 2 peaches. Find the cost of a pear and a peach.
    6·1 answer
  • What are the domain and range
    14·2 answers
  • The fractions 7/8, 3/4, and 1/2, Which is a correct comparison of these fractions?
    10·1 answer
  • Two canoes travel down a river, starting at 10:00. One canoe travels twice as fast as the other. After 3.5 hr, the canoes are 5.
    8·1 answer
  • Please help me <br>click on image and explain answer
    12·2 answers
  • 11. Mir. Ed earns $14.50 per hour. His regular hours are 40 hours per week, and he
    9·1 answer
  • Please help, i’m not sure if i’m correct
    11·1 answer
  • Find the principal of interest!! random answers will be reported
    10·2 answers
  • For a school fundraiser, Elena made x number of T-shirts. She ordered T-shirts and printed graphics
    10·1 answer
  • Find three quarters of a tenth of 800
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!