Answer:
265.2amu
Explanation:
Given parameters:
Atomic mass = 254.9amu
Abundance of isotope 1 = 72%
Atomic mass of isotope 1 = 250.9amu
Abundance of isotope 2 = 100 - 72 = 28%
Unknown:
Atomic mass of isotope 2 = ?
Solution:
To find the atomic mass of isotope 2, use the expression below:
Atomic mass = (abundance of isotope 1 x atomic mass of isotope 1) + (abundance of isotope 2 x atomic mass of isotope 2)
Now insert the parameters and find the unknown;
254.9 = (0.72 x 250.9) + (0.28 x Atomic mass of isotope 2)
254.9 = 180.648 + 0.28x atomic mass of isotope 2
254.9 - 180.648 = 0.28x atomic mass of isotope 2
74.25 = 0.28 x atomic mass of isotope 2
Atomic mass of isotope 2 = 265.2amu
Answer: Temperature final = 103 °C
Explanation: To solve for final temperature we use the equation of heat:
Q= mc∆T
Next derive the equation to find final temperature
Q = mc(T final - T initial)
Q / mc = T final - T initial
Transpose T initial and change the sign so that T final will be left.
T final = Q / mc + T initial
Substitute the values:
T final = 305 J / 28.8 g x 0.128 J/(g°C)
= 305 J / 3.6864 J/°C
= 82.7 + 20.0°C
= 103 °C final temperature.
Answer:

Explanation:
Hello,
In this case, we can first compute the volume of the sample in mL from the ounces:

Thus, with the volume of the sample, we can compute the amount of sugar given the 10 g of sugar per 100 mL of soft drink as shown below:

Best regards.
My main reason would be momentum – it depends on the mass as
well as the speed of the colliding objects. For example if two sedans
travelling in a low speed bump each other, then probably the damage would be
minimal scratches. However, if a high speed car crashes unto a heavy truck also
travelling fast, then the result would be catastrophic.
Answer:
neon is the Noble gas but I have not studied this much