1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
vovikov84 [41]
3 years ago
14

A $104.000 selling price with $24.000 down at 81/2% for 25 years results in monthly payments of

Mathematics
2 answers:
Vinil7 [7]3 years ago
4 0
 The monthly payment would be $289.33

$104,000 - $24,000 = $80,000
$80,000 x %8.5 interest = $6,800
$80,000 + $6,800 = $86,800  (total being paid back)
12 (total of months in a year) x 25 (number of years) = 300
Divide $86,800 by 300 and your monthly payment is $289.33
aksik [14]3 years ago
3 0
Pv=104,000−24,000=80,000
Now use the formula of the present value of annuity ordinary
Pv=pmt [(1-(1+r/k)^-kn)/(r/k)]
Solve for pmt
Pmt= ?
Pv=80000
R 8+1/2=8.5%
K monthly 12
N 25 years
Plug in the formula above then solve for pmt

Pmt=80,000÷(((1−(1+0.085÷12)^(
−12×25))÷(0.085÷12)))=644.18
You might be interested in
Lynn has a watering can that holds 16 cups of water and she feels it halfway full then she what is her 15 plans so that each pla
VashaNatasha [74]
The answer is 0.5333E
6 0
2 years ago
What is the inverse of f(x)=1.5^x+4
STatiana [176]

Answer:

Step-by-step explanation:

4 0
2 years ago
A)A cuboid with a square x cm and height 2xcm². Given total surface area of the cuboid is 129.6cm² and x increased at 0.01cms-¹.
Nutka1998 [239]

Answer: (given assumed typo corrections)


(V ∘ X)'(t) = 0.06(0.01t+3.6)^2 cm^3/sec.


The rate of change of the volume of the cuboid in change of volume per change in seconds, after t seconds. Not a constant, for good reason.



Part B) y'(x+Δx/2)×Δx gives exactly the same as y(x+Δx)-y(x), 0.3808, since y is quadratic in x so y' is linear in x.


Step-by-step explanation:

This problem has typos. Assuming:

Cuboid has square [base with side] X cm and height 2X cm [not cm^2]. Total surface area of cuboid is 129.6 cm^2, and X [is] increas[ing] at rate 0.01 cm/sec.


129.6 cm^2 = 2(base cm^2) + 4(side cm^2)

= 2(X cm)^2 + 4(X cm)(2X cm)

= (2X^2 + 8X^2)cm^2

= 10X^2 cm^2

X^2 cm^2 = 129.6/10 = 12.96 cm^2

X cm = √12.96 cm = 3.6 cm


so X(t) = (0.01cm/sec)(t sec) + 3.6 cm, or, omitting units,

X(t) = 0.01t + 3.6

= the length parameter after t seconds, in cm.


V(X) = 2X^3 cm^3

= the volume when the length parameter is X.


dV(X(t))/dt = (dV(X)/dX)(X(t)) × dX(t)/dt

that is, (V ∘ X)'(t) = V'(X(t)) × X'(t) chain rule


V'(X) = 6X^2 cm^3/cm

= the rate of change of volume per change in length parameter when the length parameter is X, units cm^3/cm. Not a constant (why?).


X'(t) = 0.01 cm/sec

= the rate of change of length parameter per change in time parameter, after t seconds, units cm/sec.

V(X(t)) = (V ∘ X)(t) = 2(0.01t+3.6)^3 cm^3

= the volume after t seconds, in cm^3

V'(X(t)) = 6(0.01t+3.6)^2 cm^2

= the rate of change of volume per change in length parameter, after t seconds, in units cm^3/cm.

(V ∘ X)'(t) = ( 6(0.01t+3.6)^2 cm^3/cm )(0.01 cm/sec) = 0.06(0.01t+3.6)^2 cm^3/sec

= the rate of change of the volume per change in time, in cm^3/sec, after t seconds.


Problem to ponder: why is (V ∘ X)'(t) not a constant? Does the change in volume of a cube per change in side length depend on the side length?


Question part b)


Given y=2x²+3x, use differentiation to find small change in y when x increased from 4 to 4.02.


This is a little ambiguous, but "use differentiation" suggests that we want y'(4.02) yunit per xunit, rather than Δy/Δx = (y(4.02)-y(4))/(0.02).


Neither of those make much sense, so I think we are to estimate Δy given x and Δx, without evaluating y(x) at all.

Then we want y'(x+Δx/2)×Δx


y(x) = 2x^2 + 3x

y'(x) = 4x + 3


y(4) = 44

y(4.02) = 44.3808

Δy = 0.3808

Δy/Δx = (0.3808)/(0.02) = 19.04


y'(4) = 19

y'(4.01) = 19.04

y'(4.02) = 19.08


Estimate Δy = (y(x+Δx)-y(x)/Δx without evaluating y() at all, using only y'(x), given x = 4, Δx = 0.02.


y'(x+Δx/2)×Δx = y'(4.01)×0.02 = 19.04×0.02 = 0.3808.


In this case, where y is quadratic in x, this method gives Δy exactly.

6 0
3 years ago
The height in meters of a rocket launched from the ground after t seconds is modeled by h(t)=-9.8r^2+49t. Graph a graph represen
Darina [25.2K]
9.8t^2-49t+40=0

t=(49±√833)/19.6

t≈1.027, 3.97

1.027<t<3.97
7 0
3 years ago
Read 2 more answers
53 less than twice jose score using the variable j to represent jose score
Damm [24]

Answer:

2j - 53

Step-by-step explanation:

"53 less than twice jose's score" comes out to 2j - 53.

3 0
3 years ago
Read 2 more answers
Other questions:
  • 5n(3n-n+8) slove it please
    11·1 answer
  • It cost $3.99 for 25 fl. oz. of detergent or $6.99 for 90 fl. oz. Which is a better buy?
    6·2 answers
  • Melissa bought 18 cupcakes and 2 gallons of fruit punch for her Valentine party if the cupcakes cost $0.33 each and the punch co
    8·1 answer
  • When combining like terms what is -9a + a?
    9·2 answers
  • Grant needs 2/3 cup of raisins and 3/4 cup of almonds to make trail mix, which statement can be used to find out if their are mo
    7·2 answers
  • Help due today ! please! <br> simplify &amp; show work
    6·1 answer
  • Hello please help thanks
    11·1 answer
  • 1. Solve for the indicated side length for x.<br>B<br>10 cm<br>Xcm<br>35<br>A<br>C<br>x cm​
    14·1 answer
  • What is the equation of the line that passes through the point (1,3) and has a slope of 6
    8·1 answer
  • Which linear inequality is represented by the graph?
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!