32.17/7 =
about 4.59571428571429
are there any instructions on rounding it to the nearest tenth, hundredths, etc.?
Solution
Question 1:
- Use of the area of squares to explain the Pythagoras theorem is given below
- The 3 squares given above have dimensions: a, b, and c.
- The areas of the squares are given by:

- The Pythagoras theorem states that:
"The sum of the areas of the smaller squares add up to the area of the biggest square"
Thus, we have:

Question 2:
- We can apply the theorem as follows:
![\begin{gathered} 10^2+24^2=c^2 \\ 100+576=c^2 \\ 676=c^2 \\ \text{Take square root of both sides} \\ \\ c=\sqrt[]{676} \\ c=26 \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%2010%5E2%2B24%5E2%3Dc%5E2%20%5C%5C%20100%2B576%3Dc%5E2%20%5C%5C%20676%3Dc%5E2%20%5C%5C%20%5Ctext%7BTake%20square%20root%20of%20both%20sides%7D%20%5C%5C%20%20%5C%5C%20c%3D%5Csqrt%5B%5D%7B676%7D%20%5C%5C%20c%3D26%20%5Cend%7Bgathered%7D)
Thus, the value of c is 26
Answer:
y = -0.5x - 2
Step-by-step explanation:
equation: f(x) = mx + b
f(-4) : -4m + b = 0 ...(1)
f(0): 0m + b = -2 b = -2 ... plug in (1)
-4m - 2 = 0
m = - 1/2 = - 0.5
linear equation: y = -0.5x - 2
Answer:
x-3
Step-by-step explanation: