A force vector F1 points due
east and has a magnitude of 200 Newtons, A second force F2 is added to F1. The
resultant of the two vectors has a magnitude of 400 newtons and points along
the due east/west line. Find the magnitude and direction of F2. Note that there
are two answers.
<span>The given values are
F1 = 200 N</span>
F2 =?
Total = 400 N
Solution:
F1 + F2 = T
200 N + F2 = 400N
F2 = 400 - 200
F2 = 200
N
Explanation:
Position-time graphs measure/express the position of a skater over time relative to the start or finish of the race (depends on how it is used). Note: are the skaters in line vertically or horizontally? Like is one directly behind the other or are they next to each other?
If the two skaters are in line horizontally with each other, then their position will be the same relative to the start or finish of the race. This means if one passes the other one, the position would be different for all times after they pass. On the graph, it would look like one single line at the start (as position is same) which splits into 2 (representing the new difference in position due to 1 passing the other.
If the two skaters are in line vertically, their lines on the graph will appear parallel to each other (assuming they are going same speed) because the position is changing at the same rate, one is just reaching the same point after the other. If the skater behind overtakes the one in front. The lines on the graph will cross and continue either in parallel but with the other line on top to represent the moment where their position is the same right before they pass and after, where the second skater is now in front.
Hope this helped!
Answer:
longitudinal engineering strain = 624.16
true strain is 6.44
Explanation:
given data
diameter d1 = 0.5 mm
diameter d2 = 25 mm
to find out
longitudinal engineering and true strains
solution
we know both the volume is same
so
volume 1 = volume 2
A×L(1) = A×L(2)
( π/4 × d1² )×L(1) = ( π/4 × d2² )×L(2)
( π/4 × 0.5² )×L(1) = ( π/4 × 25² )×L(2)
0.1963 ×L(1) = 122.71 ×L(2)
L(1) / L(2) = 122.71 / 0.1963 = 625.16
and we know longitudinal engineering strain is
longitudinal engineering strain = L(1) / L(2) - 1
longitudinal engineering strain = 625.16 - 1
longitudinal engineering strain = 624.16
and
true strain is
true strain = ln ( L(1) / L(2))
true strain = ln ( 625.16)
true strain is 6.44
Answer:
* to make more income
*to became popular on stock markers
*to be known as a good business