Answer:
x^3-2x^2-13x+6
Step-by-step explanation:
We are to simplify the expression (x+3)(x^2−5x+2). This is as shown;
(x+3)(x^2−5x+2)
Expand
= x(x^2)-5x(x)+2x+3x^2-3(5x)+6
= x^3 - 5x^2+2x+3x^2-15x+6
Collect the like terms
= x^3 - 5x^2+3x^2+2x-15x=6
= x^3-2x^2-13x+6
This gives the required expression
Using the concept of probability, the probability of not landing on <em>yellow or red at all</em> is 1/4.
<u>Creating</u><u> </u><u>a</u><u> </u><u>square</u><u> </u><u>model</u><u> </u><u>of</u><u> </u><u>the</u><u> </u><u>two</u><u> </u><u>spins</u><u> </u><u>:</u>
- Red(R) ; Blue(B) ; Green(G) ; Yellow(Y)
___ R ___ B ___ G ___ Y
R_ RR __ RB __ RG __ RY
B_ BR __ BB __ BG __ BY
G_ GR __GB __ GG __GY
Y_ YR __ YB __ YG __ YY
- <em>Sample</em><em> </em><em>space</em><em> </em><em>=</em><em> </em><em>4²</em><em> </em><em>=</em><em> </em><em>16</em>
<u>Combinations</u><u> </u><u>without</u><u> </u><u>red</u><u> </u><u>and</u><u> </u><u>yellow</u><u> </u><u>:</u>
- {BB, BG, GB, GG}
- <em>Number</em><em> </em><em>of</em><em> </em><em>selections</em><em> </em><em>without</em><em> </em><em>red</em><em> </em><em>or</em><em> </em><em>yellow</em><em> </em><em>=</em><em> </em><em>4</em><em> </em>
<u>Recall</u> :
- <em>Probability</em><em> </em><em>=</em><em> </em><em>required</em><em> </em><em>outcome</em><em> </em><em>/</em><em> </em><em>Total possible</em><em> </em><em>outcomes</em><em> </em>
P(without Red or Yellow) = 4/16 = 1/4
Hence, the probability of not landing on <em>yellow</em><em> </em><em>or</em><em> </em><em>red</em><em> </em><em>at</em><em> </em><em>all</em><em> </em>is 1/4.
Learn more : brainly.com/question/14605518
0.50 because the 8 is in the hundredth place and is greater than 5 so you round it up. Then you turn that to a zero because the 8 becomes a 10 but you only use the zero. Then you turn the 4 to a 5 or else the number would be getting smaller and not larger.
Let:
• y, be the cost of the plan
,
• x, be the minutes spend on call
This way, we'll have:
Plan A:

Plan B:

If the two plans cost the same, we'll have that:

Solving for x :

A) The two plans will cost the same for 140 minutes on call
The cost will be:

B) $36.80