Answer:
Explanation:
Let mass of cylinder be M
Moment of inertia of cylinder
= 1/2 M R² r is radius of cylinder
If radius of equivalent hoop be k
Mk² = 1/2 x MR²
k = R / √2
1.2 / 1.414
Radius of gyration = 0.848 m
b )
moment of inertia of spherical shell
= 2 / 3 M R²
Moment of inertia of equivalent hoop
Mk²
So
Mk² = 2 / 3 M R²
k = √2/3 x R
= .816 X 1.2
Radius of gyration = .98 m
c )
Moment of inertia of solid sphere
= 2/5 M R²
Moment of inertia of equivalent hoop
= Mk²
Mk² = 2/5 M R²
k √ 2/5 R
Radius of gyration = .63 R
False. Energy in any form is a scalar quantity.
Answer:
work done on desk = m g h = 105 * 9.81 * 2.46 = 2534 Joules
Explanation:
so work in = 2534 / 0.875 = 2896 Joules
that is your 648 times distance your hand moved holding the rope
2896 = 648 * x
4.47 meters
I think maybe a typo, 648 N is too big, maybe 64.8 ? Any block and tackle system does better than that.
Answer:
Restoring force of the spring is 50 N.
Explanation:
Given that,
Spring constant of the spring, k = 100 N/m
Stretching in the spring, x = 0.5 m
We need to find the restoring force of the spring. It can be calculated using Hooke's law as "the force on a spring varies directly with the distance that it is stretched".


F = 50 N
So, the restoring force of the spring is 50 N. Hence, this is the required solution.