Answer:
25 to the right
Explanation:
there you go friend your awsome
For purposes of completing our calculations, we're going to assume that
the experiment takes place on or near the surface of the Earth.
The acceleration of gravity on Earth is about 9.8 m/s², directed toward the
center of the planet. That means that the downward speed of a falling object
increases by 9.8 m/s for every second that it falls.
3 seconds after being dropped, a stone is falling at (3 x 9.8) = 29.4 m/s.
That's the vertical component of its velocity. The horizontal component is
the same as it was at the instant of the drop, provided there is no horizontal
force on the stone during its fall.
I really need these points thx a lot
Answer:
471392.4 N
Explanation:
From the question,
Just before contact with the beam,
mgh = Fd.................... Equation 1
Where m = mass of the beam, g = acceleration due to gravity, h = height. F = average Force on the beam, d = distance.
make f the subject of the equation
F = mgh/d................ Equation 2
Given: m = 1900 kg, h = 4 m, d = 15.8 = 0.158 m
Constant: g = 9.8 m/s²
Substitute into equation 2
F = 1900(4)(9.8)/0.158
F = 471392.4 N
Answer:
Current, I = 3.57A
Explanation:
A current of I amperes means that I Coulombs of charge flows through the conductor (heating coil) per second.
Therefore, in time t, the total charge (Q) passing through any point in which the current (C) flows will be given by the equation;
Q = It
Where; Q is the charge in coulombs; I is the current in amperes; t is the time in seconds.
From the question, we were given the following parameters;
Q = 25C, t= 7secs and I =?
From the equation, Q = It
We make current, I the subject of formula;
Thus, I = Q/t
Substituting into the equation;
I = 25/7
I = 3.57Amp.