Answer:

Step-by-step explanation:
so Kennedy is right
For this one, we need to make an equation to make it look easier
(0.10 × m) + 500 = 1280
We solve for m
Subtract 500 from both sides and we get
0.10 × m = 780
Now, divide both sides by 0.10
And m would be equal to 7800
Let's see if this is correct.
Five hundred dollars more than 10% of m
We found that 10% of m is 780, now we add 500 to make the statement true. It will give us a total of 1280, which is equal of what the question says.
I hope this helps.
YOU'RE WELCOME :D
*brainliest*
Answer:
The inverse of function
is ![\mathbf{f^{-1} (x)=\sqrt[5]{x}+7}](https://tex.z-dn.net/?f=%5Cmathbf%7Bf%5E%7B-1%7D%20%28x%29%3D%5Csqrt%5B5%5D%7Bx%7D%2B7%7D)
Option A is correct option.
Step-by-step explanation:
For the function
, Find 
For finding inverse of x,
First let:

Now replace x with y and y with x

Now, solve for y
Taking 5th square root on both sides
![\sqrt[5]{x}=\sqrt[5]{(y+7)^5}\\\sqrt[5]{x}=y+7\\=> y+7=\sqrt[5]{x}\\y=\sqrt[5]{x}-7](https://tex.z-dn.net/?f=%5Csqrt%5B5%5D%7Bx%7D%3D%5Csqrt%5B5%5D%7B%28y%2B7%29%5E5%7D%5C%5C%5Csqrt%5B5%5D%7Bx%7D%3Dy%2B7%5C%5C%3D%3E%20y%2B7%3D%5Csqrt%5B5%5D%7Bx%7D%5C%5Cy%3D%5Csqrt%5B5%5D%7Bx%7D-7)
Now, replace y with 
![f^{-1} (x)=\sqrt[5]{x}+7](https://tex.z-dn.net/?f=f%5E%7B-1%7D%20%28x%29%3D%5Csqrt%5B5%5D%7Bx%7D%2B7)
So, the inverse of function
is ![\mathbf{f^{-1} (x)=\sqrt[5]{x}+7}](https://tex.z-dn.net/?f=%5Cmathbf%7Bf%5E%7B-1%7D%20%28x%29%3D%5Csqrt%5B5%5D%7Bx%7D%2B7%7D)
Option A is correct option.
<h3>
Short Answer: Yes, the horizontal shift is represented by the vertical asymptote</h3>
A bit of further explanation:
The parent function is y = 1/x which is a hyperbola that has a vertical asymptote overlapping the y axis perfectly. Its vertical asymptote is x = 0 as we cannot divide by zero. If x = 0 then 1/0 is undefined.
Shifting the function h units to the right (h is some positive number), then we end up with 1/(x-h) and we see that x = h leads to the denominator being zero. So the vertical asymptote is x = h
For example, if we shifted the parent function 2 units to the right then we have 1/x turn into 1/(x-2). The vertical asymptote goes from x = 0 to x = 2. This shows how the vertical asymptote is very closely related to the horizontal shifting.