Answer:
Sample A is a mixture
Sample B is a mixture
Explanation:
For sample A, we are told that the originally yellow solid was dissolved and we obtained an orange powder at the bottom of the beaker. Subsequently, only about 30.0 g of solid was recovered out of the 50.0g of solid dissolved. This implies that the solid is not pure and must be a mixture. The other components of the mixture must have remained in solution accounting for the loss in mass of solid obtained.
For sample B, we are told that boiling started at 66.2°C and continued until 76.0°C. The implication of this is that B must be a mixture since it boils over a range of temperatures. Pure substances have a sharp boiling point.
Answer: Well!
Explanation: I was going to answer D but fverdell82156 got to it first! So I have to agree with him! It is D!
Answer:
0.05
moles
Explanation:
In a mole of any substance, there exist
6.02⋅1023
units of that substance.
So here, we got:
3.01⋅1022Mg atoms⋅1mol6.02⋅1023M gatoms=0.05mol
Answer:
C. Hb binds O2 more tightly than Mb.
Explanation:
<u>Hb and Mb are both oxygen carrier protiens which contain the heme group. Hb has 4 heme units in 1 moleucle which work via coperative effect. On the other hand, Mb has only one heme unit. </u>
<u>From above theory, statement A and B are correct.</u>
<u>Although the heme group of the Mb is identical to those of Hb, Mb has a higher affinity for carrying oxygen than hemoglobin.</u>
<u>Hence, Statement C is wrong.</u>
Thats why the function of hemoglobin is to transport oxygen and that of myoglobin is to store oxygen.
<u>When a curve is plotted between oxygen accepted and the pressure of the oxygen, Hb shows sigmoidal, whereas Mb shows hyperbolic oxygen saturation curves.</u><u> The statement D is correct.</u>
<u>Bohr effect and various factors decribe the statement : Hb-oxygen binding is dependent on physiological changes in pH, whereas Mb-oxygen binding is not. </u><u>The statement E is also correct.</u>
Answer:

Explanation:
Given that,
The wavelength of a microwave is 7.42 mm or 0.00742 m
No. of photons, n = 359
We need to find the energy produced by this no of photons. It can be given by the formula as follows :

or

So, the required energy is
.