Answer:
CaCO3 (s) → CaO (s) + CO2 (g)
The mass of carbonate that must have reacted was 43.03 grams
Explanation:
CaCO3 → CaO + CO2
Relation between reactant and product is 1:1
Let's apply the Ideal Gas Law to find out the moles of CO2 which were produced.
P . V = n . R . T
1 atm . 23 L = n . 0.082 L.atm/mol.K . 653K
(1atm . 23L) / (0.082 mol.K/L.atm . 653K) = n
0.43 moles = n
0.43 moles of CO2, were produced from 0.43 moles of CaCO3.
Molar weight of CaCO3 = 100.08 g/m
Mass = Molar weight . moles
Mass = 100.08 g/m 0.43 m = 43.03 g
The Empirical formula of compound is C₁H₂O₁. The Molecular Formula of the compound is 4 (C₁H₂O₁).
<h3>What is Empirical Formula ?</h3>
Empirical formula is the simplest whole number ratio of atoms present in given compound.
Element % Atomic mass Relative no. of atoms Simplest whole ratio
C 40.6 12
= 3.3 
H 5.1 1
= 5.1 
O 54.2 16
= 3.3 
The Empirical formula of compound is C₁H₂O₁ or CH₂O
<h3>How to find the Molecular formula of compound ?</h3>
Molecular formula = Empirical formula × n

= 4
Molecular formula = n × Empirical formula
= 4 (C₁H₂O₁)
Thus from the above conclusion we can say that The Empirical formula of compound is C₁H₂O₁. The Molecular Formula of the compound is 4 (C₁H₂O₁).
Learn more about the Empirical Formula here: brainly.com/question/1603500
#SPJ1
Antimony is a chemical element with symbol Sb (from Latin: stibium) and atomic number 51. A lustrous gray metalloid, it is found in nature mainly as the sulfide mineral stibnite (Sb2S3). Antimony compounds have been known since ancient times and were powdered for use as medicine and cosmetics, often known by the Arabic name, kohl.