Answer:
the slope of both lines are the same.
Step-by-step explanation:
Given the following segment of the Quadrilateral EFGH on a coordinate Segment FG is on the line 3x − y = −2,
segment EH is on the 3x − y = −6.
To determine their relationship, we can find the slope of the lines
For line FG: 3x - y = -2
Rewrite in standard form y = mx+c
-y = -3x - 2
Multiply through by-1
y = 3x + 2
Compare
mx = 3x
m = 3
The slope of the line segment FG is 3
For line EH: 3x - y = -6
Rewrite in standard form y = mx+c
-y = -3x - 6
Multiply through by-1
y = 3x + 6
Compare
mx = 3x
m = 3
The slope of the line segment EH is 3
Hence the statement that proves their relationship is that the slope of both lines are the same.
Answer:
f(g(x)) = x^4 + 12x^3 + 14x^2 -132x + 123
Step-by-step explanation:
Here, we simply will place g(x) into f(x)
So every x in f(x) is replaced by g(x)
Thus, we have;
(x^2 + 6x + 11)^2 + 2
= (x^2+6x-11)(x^2 + 6x -11) + 2
= x^4 + 6x^3 -11x^2 + 6x^3 + 36x^2 - 66x -11x^2 -66x + 121 + 2
= x^4 + 12x^3 + 14x^2 -132x + 123
so for A it is 16 times as large because the area is 3*3 which is 9 but since it is a triangle the area is halved and is 4.5 and divide 72 by 4.5 which gives us 16
then for b I believe that the scale factor is 4
and for C it is asking for the bottom side of the scaled copy not of triangle A and 4*3=12 so the bottom is 12
ok now its complete =)