Answer:
D
Explanation:
This explains how two noble gases molecules can have an attractive force between them.
This force is called as van dar Waals forces.
It plays a fundamental role in fields in as diverse as supramolecular chemistry structural biology .
If no other forces are present, the point at which the force becomes repulsive rather than attractive as two atoms near one another is called the van der Waals contact distance. This results from the electron clouds of two atoms unfavorably coming into contact.[1] It can be shown that van der Waals forces are of the same origin as the Casimir effect, arising from quantum interactions with the zero-point field.[2] The resulting van der Waals forces can be attractive or repulsive.[3] It is also sometimes used loosely as a synonym for the totality of intermolecular forces.[4] The term includes the force between permanent dipoles (Keesom force), the force between a permanent dipole and a corresponding induced dipole (Debye force), and the force between instantaneously induced dipoles
Answer: A. Pollutants
Explanation:
"A pollutant is a substance or energy introduced into the environment that has undesired effects, or adversely affects the usefulness of a resource. ..." - Wikipedia
Chemistry is the branch of science that deals with the identification of the substances of which matter is composed the investigation of their properties and the ways in which they interact, combine, and change and the use of these processes to form new substances.
C6H12O6 +6O2 —> 6CO2 + 6H2O
Answer:
7.04 g
Explanation:
Let's consider the reaction in the last step of the Ostwald process.
3 NO₂(g) + H₂O(l) → 2 HNO₃(aq) + NO(g)
The molar mass of HNO₃ is 63.01 g/mol. The moles corresponding to 6.40 g are:
6.40 g × (1 mol/63.01 g) = 0.102 mol
The molar ratio of NO₂ to HNO₃ is 3:2. The reacting moles of NO₂ are:
0.102 mol HNO₃ × (3 mol NO₂/2 mol HNO₃) = 0.153 mol NO₂
The molar mass of NO₂ is 46.01 g/mol. The mass corresponding to 0.153 moles is:
0.153 mol × (46.01 g/mol) = 7.04 g