Answer: x = ¹/₂ ± √⁸¹
------------
2
Step-by-step explanation:
First write out the equation
x² - x - 20
Now we now write the equation by equating to 0
x² - x - 20 = 0
We now move 20 to the other side of the equation. So
x² - x = 20,
We now add to both side of the equation square of the half the coefficient of the (x) and not (x²) which is (1) . So, the equation now becomes
x² - x + ( ¹/₂ )² = 20 + ( ¹/₂ )²
x² - ( ¹/₂ )² = 20 + ¹/₄
( x - ¹/₂ )² = 20 + ¹/₄, we now resolve the right hand side expression into fraction
( x - ¹/₂ )² = ⁸¹/₄ when the LCM is made 4
Taking the square root of both side to remove the square,we now have
x - ¹/₂ = √⁸¹/₄
x - ¹/₂ = √⁸¹/₂
Therefore,
x = ¹/₂ ± √⁸¹
-----------
2
Answer:

Step-by-step explanation:
Q is a point on the line segment PR.
PQ = 3
QR = 11
PR = PQ + QR
PR = 3 + 11 = 14
Answer:
For each part, find how many numbers have the stated characteristic, then divide by 21.
e.g. multiples of 5:
these would be 10, 15, 20, 25, and 30
so prob (a multiple of 5 ) = 5/21
Do the others the same way
Call the point of intersection of the diagonals point X.
Each base is the hypotenuse of an isosceles right triangle whose sides are the diagonals and whose 90° angle is at X. The altitude of that triangle (⊥ distance to the base from X) is half the length of the hypotenuse. Then the height of the trapezoid is half the sum of the base lengths.
The area of the trapezoid is the product of the height and half the sum of the base lengths, hence is the square of half the sum of the base lengths.
... Area = ((16 cm +30 cm)/2)² = (23 cm)² = 529 cm²
Answer:
slope=2
I think that you can use demos it is a calculator just put the point and you get the answer