Answer:
A path that allows most of the current in an electric circuit to flow around or away from the principal elements or devices in the circuit.
Answer:
Sound waves travel at 343 m/s through the air and faster through liquids and solids. The waves transfer energy from the source of the sound, e.g. a drum, to its surroundings. Your ear detects sound waves when vibrating air particles cause your ear drum to vibrate. The bigger the vibrations the louder the sound.
Explanation:
Answer:
The Sun's layers consist of the following in this order.
1) Corona
2) Transition Region
3) Chromosphere
4) Photosphere
5) Convection Zone
6) Radiative Zone
and last but not least 7) The Core
Hope this helps ;)
315g/95gmol-1
3.315 moles of MgCl2
Answer:
v = 0.41 m/s
Explanation:
- In this case, the change in the mechanical energy, is equal to the work done by the fricition force on the block.
- At any point, the total mechanical energy is the sum of the kinetic energy plus the elastic potential energy.
- So, we can write the following general equation, taking the initial and final values of the energies:

- Since the block and spring start at rest, the change in the kinetic energy is just the final kinetic energy value, Kf.
- ⇒ Kf = 1/2*m*vf² (2)
- The change in the potential energy, can be written as follows:

where k = force constant = 815 N/m
xf = final displacement of the block = 0.01 m (taking as x=0 the position
for the spring at equilibrium)
x₀ = initial displacement of the block = 0.03 m
- Regarding the work done by the force of friction, it can be written as follows:

where μk = coefficient of kinettic friction, Fn = normal force, and Δx =
horizontal displacement.
- Since the surface is horizontal, and no acceleration is present in the vertical direction, the normal force must be equal and opposite to the force due to gravity, Fg:
- Fn = Fg= m*g (5)
- Replacing (5) in (4), and (3) and (4) in (1), and rearranging, we get:


- Replacing by the values of m, k, g, xf and x₀, in (7) and solving for v, we finally get:
