Answer:
The initial velocity of the ball is 28.714 m/s
Explanation:
Given;
time of flight of the ball, t = 2.93 s
acceleration due to gravity, g = 9.8 m/s²
initial velocity of the ball, u = ?
The initial velocity of the ball is given by;
v = u + (-g)t
where;
v is the final speed of the ball at the given time, = 0
g is negative because of upward motion
0 = u -gt
u = gt
u = (9.8 x 2.93)
u = 28.714 m/s
Therefore, the initial velocity of the ball is 28.714 m/s
The general formula is: Momentum = (mass) x (speed)
I never like to just write a bunch of algebra without explaining it.
But in this particular case, there's really not much to say, and
I think the algebra will pretty well explain itself. I hope so:
Original momentum = (original mass) x (original speed)
New momentum = (2 x original mass) x (2 x original speed)
= (2) x (original mass) x (2) x (original speed)
= (2) x (2) x (original mass) x (original speed)
= (4) x (original mass) x (original speed)
= (4) x (original momentum).
Any charged object can<span> exert the force upon other objects ... i think tell me if im right</span>
Answer:
9.3 g/cm³
Explanation:
First, convert kg to g:
0.485 kg × (1000 g / kg) = 485 g
Density is mass divided by volume:
D = (485 g) / (52 cm³)
D = 9.33 g/cm³
Rounding to two significant figures, the density is 9.3 g/cm³.
<span>high pressure produced by the clouds because its the most likely!!!!!!!!!!</span>