Answer
10
Explanation:
goes up by 10 each time 10 to 20 to 30
They PUBLISH !
They provide complete written, detailed, technical descriptions of their thoughts, hypotheses, experiments, data, and conclusions, in publications that are read by other scientists around the world.
Answer: 210.2N
Explanation:
Assume a bucket of water with a total mass of 68kg is attached to a rope, which in turn is tied around a 0.078m radius cylinder at the top of a well. A crank with a turning radius of 0.250 m is attached to the end of the cylinder.
the minimum force directed perpendicular to the crank handle required to raise the bucket is
(Assume the rope's mass is negligible, that the cylinder turns on friction-less bearings, and that g = 9.8 m/s2
The crank handle provides a torque T=0.25F where F is the force we are looking for.
A free body diagram will show that the tension in the rope times the cylinder radius R is equal to the torque on the cylinder. But the tension in the rope is just the weight of the bucket
W=mg= 68kg
W(0.078)=T=0.25F
F=0.312W=0.312(68kg)=21.216kg= 210.2N
Answer:
1st choice is the true
cause Science and technology are Related Improvement in science is improvement in technology
Answer:
<em>The glider's new speed is 68.90 m/s</em>
Explanation:
<u>Principle Of Conservation Of Mechanical Energy</u>
The mechanical energy of a system is the sum of its kinetic and potential energy. When the only potential energy considered in the system is related to the height of an object, then it's called the gravitational potential energy. The kinetic energy of an object of mass m and speed v is

The gravitational potential energy when it's at a height h from the zero reference is

The total mechanical energy is


The principle of conservation of mechanical energy states the total energy is constant while no external force is applied to the system. One example of a non-conservative system happens when friction is considered since part of the energy is lost in its thermal manifestation.
The initial conditions of the problem state that our glider is glides at 416 meters with a speed of 45.2 m/s. The initial mechanical energy is

Operating in terms of m


Then we know the glider dives to 278 meters and we need to know their final speed, let's call it
. The final mechanical energy is

Operating and factoring

Both mechanical energies must be the same, so

Simplifying by m and rearranging

Computing

The glider's new speed is 68.90 m/s