If the object is moving in a straight line at a constant speed, then that's
the definition of zero acceleration. It can only happen when the sum of
all forces (the 'net' force) on the object is zero.
And it doesn't matter what the object's mass is. That argument is true
for specks of dust, battleships, rocks, stars, rock-stars, planets, and
everything in between.
#1. A. Waxing crescent.
#2. 1.
#3. C.
#4. C.
Answer:
b
Explanation:
imagine urself on an elevator dont you feel lighter
Gravity
The moon doesn't smash into the earth because the gravity from the earth keeps the moon in orbit around it.
is the acceleration of the box.
<u>Explanation:</u>
Given data:
Mass of the box = 3.74 kg
Flat friction-less ground is pulled forward by a 4.20 N force at a 50.0 degree angle and pulled back by a 2.25 N force at a 122 degree angle.
First, we need to find the net horizontal force acting on the box. With the given data, the equation can be formed as below. Net horizontal force acting on the box (F) is given by


F = 2.699676 – 1.192275 = 1.507 N
Next, find acceleration of the box using Newton's second law of motion. This states that the link between mass (m) of an objects and the force (F) required to accelerate it. The equation can be given as

