Answer:
M g H = 1/2 M v^2 potential energy = kinetic energy
v^2 = 2 g H = 2 * 9.80 * 6 = 117.6 m/s^2
v = 10.8 m/s
(C)
Answer:
An asteroid moving at a constant speed through space.
Explanation:
<span>Ocean currents act much like a conveyer belt,
transporting warm water and precipitation from the equator toward the
poles and cold water from the poles back to the tropics. Thus, currents
regulate global climate, helping to counteract the uneven distribution of solar radiation reaching Earth's surface.</span>
Answer:
The possible thickness of the soap bubble = 
Explanation:
<u>Given:</u>
- Refractive index of the soap bubble,

- Wavelength of the light taken,

Let the thickness of the soap bubble be
.
It is given that the soap bubble appears very bright, it means, there is a constructive interference takes place.
For the constructive interference of light through a thin film ( soap bubble), the condition of constructive interference is given as:

where
is the order of constructive interference.
Since the soap bubble is appearing very bright, the order should be 0, as
order interference has maximum intensity.
Thus,

It is the possible thickness of the soap bubble.
Given : A ball of mass 40 g moving at a velocity of 4 m/s.
To find : Calculate the kinetic energy in joules ?
Solution :
The kinetic energy formula is given by,
where, v is the velocity v=4 m/s
m is the mass m=40 g
Convert g into kg,
Substitute the values,
Therefore, the kinetic energy is 0.32 Joules.