Answer: 
Explanation:
According to the conservation of linear momentum principle, the initial momentum
(before the collision) must be equal to the final momentum
(after the collision):
(1)
In addition, the initial momentum is:
(2)
Where:
is the mass of the comet
is the mass of the asteroid
is the velocity of the comet, which is positive
is the velocity of the asteroid, since it is at rest
And the final momentum is:
(3)
Where:
is the final velocity
Then :
(4)
Isolating
:
(5)

Finally:
This is the final velocity, which is also in the positive direction.
<span>In general, as you move across a row in the periodic table, B. atomic radius decreases.
This is because there is a stronger attraction between outermost electrons and nucleus, which is why the radius between them becomes smaller.
</span>
Right. You are true. The direction of the electric field is defined to be
the direction of the force on a small positive charge placed in the field.
Answer:
a)V= 0.0827 m³
b)P=181.11 x 10² N/m²
Explanation:
Given that
m = 81.5 kg
Density ,ρ = 985 kg/m³
As we know that
Mass = Volume x Density
81.5 = V x 985
V= 0.0827 m³
The force exerted by weight = m g
F= m g= 81.5 x 10 = 815 N ( Take ,g= 10 m/s²)
Area ,A= 4.5 x 10⁻² m²
The Pressure P


P=181.11 x 10² N/m²
(c) When the two pulses completely overlap on the string forms a straight line.
A single disturbance that travels via a transmission medium is referred to as a pulse. This medium might be formed of stuff or a vacuum, and it might be endlessly large or finite in size.
Consider two pulses that are identical in shape and proceed in opposite directions along a string, with the exception that one has positive displacements of the string's elements while the other has negative displacements.
On the string, the two pulses blend together completely.
The pulses completely balance one another out in terms of removing string elements from equilibrium, yet the string still moves. Shortly after the string is once again shifted, the pulses will have passed each other.
The correct option is (c)
Learn more about pulse here:
brainly.com/question/14885673
#SPJ4