Answer:
The law of conservation of mass states that in a chemical reaction mass is neither created nor destroyed...The carbon atom changes from a solid structure to a gas but it's mass does not change. Similarly the law of conservation of energy states that the amount of energy is neither created nor destroyed
Explanation:
This might also a answer your question.... The law of conservation of mass states that mass is an isolated system is neither created nor destroyed by chemical reactions or physical transformations. according to the law of conservation of mass, the mass of the products in a chemical reaction must be equal the mass of reactants
Answer:
v=2.42m/s
Explanation:
We use the energy conservation theorem in order to solve the problem. The energy when the spring is compressed is equal at the energy when the disk leaves the spring:

At the beginning the initial energy is totally potential, energy linked to the compressed spring. At the end the energy is totally kinetics
We solve the equation in order to find the speed.
k=162 N/m
x=7 cm=0.07m
m=0.135 kg

Answer:
a) 43.20V
b) 2.71W/s
c) 40.25s
d) 7.77Nm
Explanation:
(a) The emf of a rotating coil with N turns is given by:

N: turns
B: magnitude of the magnetic field
A: area
w: angular velocity
the emf max is given by:

(b) the maximum rate of change of the magnetic flux is given by:

(c) 
(d) The torque is given by:

Answer:
B
Magnified images will not be created.
Explanation:
I did it and this was the correct answer
Answer: <u><em>C. Steel</em></u>
Explanation: <em><u>When a sound wave travels through a solid body consisting</u></em>
<em><u /></em>
<em><u>of an elastic material, the velocity of the wave is relatively</u></em>
<em><u /></em>
<em><u>high. For instance, the velocity of a sound wave traveling</u></em>
<em><u /></em>
<em><u>through steel (which is almost perfectly elastic) is about</u></em>
<em><u /></em>
<em><u>5,060 meters per second. On the other hand, the velocity</u></em>
<em><u /></em>
<em><u>of a sound wave traveling through an inelastic solid is</u></em>
<em><u /></em>
<em><u>relatively low. So, for example, the velocity of a sound wave</u></em>
<em><u /></em>
<em><u>traveling through lead (which is inelastic) is approximately</u></em>
<em><u /></em>
<em><u>1,402 meters per second.</u></em>
<em><u /></em>
<u><em /></u>