Answer:
Pb(NO₂)₂(aq) + 2 LiCl(aq) ⇒ PbCl₂(s) + 2 LiNO₂(aq)
Explanation:
Let's consider the reaction between aqueous lead (II) nitrite and aqueous lithium chloride to form solid lead (II) chloride and aqueous lithium nitrite.
Pb(NO₂)₂(aq) + LiCl(aq) ⇒ PbCl₂(s) + LiNO₂(aq)
This is a double displacement reaction. We will start balancing Cl by multiplying LiCl by 2.
Pb(NO₂)₂(aq) + 2 LiCl(aq) ⇒ PbCl₂(s) + LiNO₂(aq)
Now, we have to balance Li by multiplying LiNO₂ by 2.
Pb(NO₂)₂(aq) + 2 LiCl(aq) ⇒ PbCl₂(s) + 2 LiNO₂(aq)
The equation is now balanced.
Answer:
In the Lewis structure of P4 there are 6 bonding pairs and 4 lone pairs of electrons.
Explanation:
The structure of tetrahedral molecule of P4 is provided below.
Each phosphorus atom has 5 valence electrons out of which 3 electrons involve in bonding and the rest 2 electrons exist as a lone pair that does not involve in bonding.Hence each phosphorus atom has one lone pair.In P4 molecule there are phosphorus atoms and hence 4 lone pairs in total.
As you can see in the figure, each phosphorus atom is bonded to the other three atoms.A bond is formed when two atoms share one electron each and the pair is called bonding pair.
From the figure we can see that there are 6 bonds in total.Each bond consist of one bonding pair of electrons and hence in total there are 6 bonding pairs of electrons.
Hence in a P4 molecule there are six bonding pairs and 4 lone pairs of electrons.
Answer:
half-life of 5,700 ± 40 years
Explanation:
Empirical formula is calculated as follows
calculate the moles of each element, that is % composition/ molar mass
molar masses ( Si= 28.09g/mol , Cl= 35.5 g/mol, I=126.9 g/mol)
moles of silicon = 7.962/28.09g/mol= 0.283 moles
moles of chlorine = 20.10 / 35.5g/mol = 0.566 moles
moles of iodine= 71.94 / 126.9 g/mol= 0.567 moles
divide each mole with smallest mole (0.283)
that is silicon = 0.283/0.283= 1 mole
chlorine = 0.566/0.283= 2 mole
Iodine= o.567/0.283= 2 moles
empirical formula is therefore= SiCl2I2