Basically, the temperature is a result of the average kinetic energy of all the atoms comprising the solid/liquid/gas. In solid, these atoms can just vibrate in place, leaving them to only be able to conduct and radiate heat. However, as you probably know liquids and solids take the shape of their container because the bonds between atoms are loose enough to allow them to freely move around. Due to each individual atom having its own energy, and these atoms being free to move about the liquid/gas they collide with other atoms in the substance. These collisions result in a transfer of energy. Finally, lower energy atoms "sink" and higher energy atoms "rise" thus creating a "convection current".
Answer:
11.625
Explanation:
L = length of the ladder = 16 ft
= rate at which top of ladder slides down = - 3 ft/s
= rate at which bottom of ladder slides
y = distance of the top of ladder from the ground
x = distance of bottom of ladder from wall = 4 ft
Using Pythagorean theorem
L² = x² + y²
16² = 4² + y²
y = 15.5 ft
Also using Pythagorean theorem
L² = x² + y²
Taking derivative both side relative to "t"



= 11.625 ft/s
Power is the energy transferred or "WORK DONE" in one second
Answer:
0.191 s
Explanation:
The distance from the center of the cube to the upper corner is r = d/√2.
When the cube is rotated an angle θ, the spring is stretched a distance of r sin θ. The new vertical distance from the center to the corner is r cos θ.
Sum of the torques:
∑τ = Iα
Fr cos θ = Iα
(k r sin θ) r cos θ = Iα
kr² sin θ cos θ = Iα
k (d²/2) sin θ cos θ = Iα
For a cube rotating about its center, I = ⅙ md².
k (d²/2) sin θ cos θ = ⅙ md² α
3k sin θ cos θ = mα
3/2 k sin(2θ) = mα
For small values of θ, sin θ ≈ θ.
3/2 k (2θ) = mα
α = (3k/m) θ
d²θ/dt² = (3k/m) θ
For this differential equation, the coefficient is the square of the angular frequency, ω².
ω² = 3k/m
ω = √(3k/m)
The period is:
T = 2π / ω
T = 2π √(m/(3k))
Given m = 2.50 kg and k = 900 N/m:
T = 2π √(2.50 kg / (3 × 900 N/m))
T = 0.191 s
The period is 0.191 seconds.
Answer:
45.3°C
Explanation:
Heat gained = mass × specific heat × increase in temperature
q = mC (T − T₀)
Given C = 0.128 J/g/°C, m = 94.0 g, q = 305 J, and T₀ = 20.0°C:
305 J = (94.0 g) (0.128 J/g/°C) (T − 20.0°C)
T = 45.3°C