Answer:
a) 5.197rev/s
b) Kf/Ki =2.28
Explanation:
a) Angular momentum of the system L = Iw
ButLi=Lf
Kiwi =Ifwf
wf = (Ii/If)will = (4.65/3.4)×3.8=5.197rev/s
b)Kinetic energy KE= 0.5Iw^2
Ki = 0.5Iiwi^2
Kf=0.5Ifwf^2
Kf/Ki = Ifwf/Iiwi
Kf/Ki = (4.65/3.4))(5.197/3.8)
Kf/Ki = 1.22(1.368)^2
Kf/Ki = 2.28
Greetings
and james west is ALIVE
Answer:
The magnitude of the net force is √2F.
Explanation:
Since the two particles have the same charge Q, they exert the same force on the test charge; both attractive or repulsive. So, the angle between the two forces is 90° in any case. Now, as we know the magnitude of these forces and that they form a 90° angle, we can use the Pythagorean Theorem to calculate the magnitude of the resultant net force:

Then, it means that the net force acting on the test charge has a magnitude of √2F.
Answer:
a) 378Ns
b) 477.27N
Explanation:
Impulse is the defined as the product of the applied force and time taken. This is expressed according to the formula
I = Ft = m(v-u)
m is the mass = 70kg
v is the final velocity = 5.4m/s
u is the initial velocity = 0m/s
Get the impulse
I = m(v-u)
I = 70(5.4-0)
I = 70(5.4)
I = 378Ns
b) Average total force is expressed as
F = ma (Newton's second law)
F = m(v-u)/t
F = 378/0.792
F = 477.27N
Hence the average total force experienced by a 70.0-kg passenger in the car during the time the car accelerates is 477.27N
The weights in newtowns for the given masses are
<span> masses 22.1, 33.5, 41.3, 59.2, 78
weights 216.58N 328.3N 404.74N 580.16N 764.4N
e.g, for m=22.1kg, W=22.1kgx9.8N/kg =216.58N</span>