Answer:
We need 3910.5 joules of energy
Explanation:
Step 1: Data given
Mass of aluminium = 110 grams
Initial temperature = 52.0 °C
Final temperature = 91.5 °C
Specific heat of aluminium = 0.900 J/g°C
Step 2: Calculate energy required
Q = m*c*ΔT
⇒with Q = the energy required = TO BE DETERMINED
⇒with m = the mass of aluminium = 110 grams
⇒with c = the specific heat of aluminium = 0.900 J/g°C
⇒with ΔT = the change in temperature = T2 - T1 = 91.5 °C - 52.0 °C = 39.5 °C
Q = 110 grams * 0.900 J/g°C * 39.5
Q = 3910.5 J
We need 3910.5 joules of energy
Answer:
68,2%
Explanation:
Supposing the initial salt concentration of lake Parsons is the same of non-isolated lakes, 6,67L, and the change of salt concentration in isolated lake is just for water evaporation it is possible to write:
6,67gL⁻¹×X = 21gL⁻¹×Y
<em>-Where X is the initial water and Y is the water that remains in the isolated lake-</em>
Thus:
6,67X = 21Y
0,318 = Y/X
0,318 is the ratio of water that remains between total water. To obtain the ratio of evaporated water:
1-0,318 = 0,682
In percentage: <em>68,2%</em>
<em />
I hope it helps!
<em />
A chemical reaction is the process by which a CHANGE takes place (?)
By sharing valence electrons between the two atoms
Answer:
a) V air/day = 8640 L air an adult breaths / day
b) 0.0181 L CO intake a person / day
Explanation:
a) one average person has 12 breaths for min:
in each breath it take an average of 500 mL on air.
⇒ 12 breath / min * 500mL air / breath = 6000 mL air / min
the average air volume per day of a person is:
⇒ Vair/day = 6000 mL air / min * (60 min / h) * ( 24 h / day ) = 8640000 mLair / day * ( L / 1000 mL)
⇒ V air / day = 8640 L / day
b) 2.1 E-6 L CO / L air * 8640 L air / day = 0.0181 L CO / day