Answer:
a.
![Keq=\frac{[HCO_3^-][OH^-]}{[CO_3^{2-}]}](https://tex.z-dn.net/?f=Keq%3D%5Cfrac%7B%5BHCO_3%5E-%5D%5BOH%5E-%5D%7D%7B%5BCO_3%5E%7B2-%7D%5D%7D)
b.
![Keq=[O_2]^3](https://tex.z-dn.net/?f=Keq%3D%5BO_2%5D%5E3)
c.
![Keq=\frac{[H_3O^+][F^-]}{[HF]}](https://tex.z-dn.net/?f=Keq%3D%5Cfrac%7B%5BH_3O%5E%2B%5D%5BF%5E-%5D%7D%7B%5BHF%5D%7D)
d.
![Keq=\frac{[NH_4^+][OH^-]}{[NH_3]}](https://tex.z-dn.net/?f=Keq%3D%5Cfrac%7B%5BNH_4%5E%2B%5D%5BOH%5E-%5D%7D%7B%5BNH_3%5D%7D)
Explanation:
Hello there!
In this case, for the attached reactions, it turns out possible for us to write the equilibrium expressions by knowing any liquid or solid would be not-included in the equilibrium expression as shown below, with the general form products/reactants:
a.
![Keq=\frac{[HCO_3^-][OH^-]}{[CO_3^{2-}]}](https://tex.z-dn.net/?f=Keq%3D%5Cfrac%7B%5BHCO_3%5E-%5D%5BOH%5E-%5D%7D%7B%5BCO_3%5E%7B2-%7D%5D%7D)
b.
![Keq=[O_2]^3](https://tex.z-dn.net/?f=Keq%3D%5BO_2%5D%5E3)
c.
![Keq=\frac{[H_3O^+][F^-]}{[HF]}](https://tex.z-dn.net/?f=Keq%3D%5Cfrac%7B%5BH_3O%5E%2B%5D%5BF%5E-%5D%7D%7B%5BHF%5D%7D)
d.
![Keq=\frac{[NH_4^+][OH^-]}{[NH_3]}](https://tex.z-dn.net/?f=Keq%3D%5Cfrac%7B%5BNH_4%5E%2B%5D%5BOH%5E-%5D%7D%7B%5BNH_3%5D%7D)
Regards!
They have the same number of protons in the nucleus, giving them the same atomic number, but a different number of neutrons giving each elemental isotope a different atomic weight.
N2(g)+3H2 >>>>>2NH3(g)
the mole ratio between N2, H2 and NH3. It is 1 : 3 : 2
mole N2 present
moles H2 present = 25.0 g H2 x 1 mole H2/2 g = 12.5 moles H2 present
Based on mole ratio, N2 is limiting in this situation because there is more than enough H2 but not enough N2.
moles NH3 that can be produced = 1 mole N2 x 2 moles NH3/mole N2 = 2 moles NH3 can be produced
grams of NH3 that can be produced = 2 moles NH3 x 17 g/mole = 34 grams of NH3 can be produced
0.1535g is the mass of the air contained in the flask.
A substance's density is defined as its mass per unit of volume. Density is most frequently represented by the symbol, however Latin letter D may also be used. Mass divided by volume is the formula for density in mathematics: ρ = M/V. where m is the mass, V is the volume, and ρ is the density.
The given are:
1. Mass = ?
2. Density = 1.228 g/L
3. Volume = 125mL to L
Plugging in the values we get,
ρ = M/V
1.228 = M/ 0.125
M = 0.1535g
Therefore, 0.1535g is the mass of the air contained in the flask.
Learn more about mass and density here;
brainly.com/question/6107689
#SPJ9
6 Na, 2 P, 8 O
8 Al, 12 S, 48 O
6 P, 30 Cl