The answer is (C) The electrons are moving easily between the nuclei of metal atoms.
The explanation:
-The electrons then move freely throughout the space between the atomic nuclei. ... Metals are good conductors of electricity because the electrons in the electron sea are free to flow and carry electric current. Metals are ductile and malleable because local bonds can be easily broken and reformed.
1-Metals are good conductors of electricity because the electrons in the electron sea are free to flow and carry electric current.
2-Metals are ductile and malleable because local bonds can be easily broken and reformed.
3-Metals are shiny. Light cannot penetrate their surface; the photons simply reflect off the metal surface. However, there is an upper limit to the frequency of light at which the photons are reflected.
Pangea was formed in the Paleozoic Era
Answer:
Most liking the puck will go flying because of the force of the hockey stick.
Answer:
(a) 7.11 x 10⁻³⁷ m
(b) 1.11 x 10⁻³⁵ m
Explanation:
(a) The de Broglie wavelength is given by the expression:
λ = h/p = h/mv
where h is plancks constant, p is momentum which is equal to mass times velocity.
We have all the data required to calculate the wavelength, but first we will have to convert the velocity to m/s, and the mass to kilograms to work in metric system.
v = 19.8 mi/h x ( 1609.34 m/s ) x ( 1 h / 3600 s ) = 8.85 m/s
m = 232 lb x ( 0.454 kg/ lb ) = 105.33 kg
λ = h/ mv = 6.626 x 10⁻³⁴ J·s / ( 105.33 kg x 8.85 m/s ) = 7.11 x 10⁻³⁷ m
(b) For this part we have to use the uncertainty principle associated with wave-matter:
ΔpΔx > = h/4π
mΔvΔx > = h/4π
Δx = h/ (4π m Δv )
Again to utilize this equation we will have to convert the uncertainty in velocity to m/s for unit consistency.
Δv = 0.1 mi/h x ( 1609.34 m/mi ) x ( 1 h/ 3600 s )
= 0.045 m/s
Δx = h/ (4π m Δv ) = 6.626 x 10⁻³⁴ J·s / (4π x 105.33 kg x 0.045 m/s )
= 1.11 x 10⁻³⁵ m
This calculation shows us why we should not be talking of wavelengths associatiated with everyday macroscopic objects for we are obtaining an uncertainty of 1.11 x 10⁻³⁵ m for the position of the fullback.