Answer:
Explanation:
A proton and electron are moving in the positive x direction, this shows that their velocity will be in the positive x direction
V = v•i
Magnetic field Is the positive z direction
B = B•k
A. For proton.
Proton has a positive charge of q
Direction of force on proton
Force is given as
F = q(v×B)
F = q( v•i × B•k)
F = qvB (i×k)
From vectors i×k = -j
F = -qvB •j
Then, for the positive charge, the force will act in the negative direction of the y-axis
B. For electron
Electron has a negative of -q
Direction of force on proton
Force is given as
F = q(v×B)
F = -q( v•i × B•k)
F = -qvB (i×k)
From vectors i×k = -j
F = --qvB •j
F = qvB •j
Then, for the negative charge, the force will act in the positive direction of the y-axis
To find out scientific notation, you want to make sure that number is less than 10. So do 5.000000, you don't rally need the zeros but I just want to make my point. So use 10^x meaning ten the whatever power adds zeros like 5.000000x10^6 meaning it is increasing it by six zeros moving it out of the decimals and letting become 5,000,000.
Answer:
The gravitational potential energy of the ball is 13.23 J.
Explanation:
Given;
mass of the ball, m = 0.5 kg
height of the shelf, h = 2.7 m
The gravitational potential energy is given by;
P.E = mgh
where;
m is mass of the ball
g is acceleration due to gravity = 9.8 m/s²
h is height of the ball
Substitute the givens and solve for gravitational potential energy;
PE = (0.5 x 9.8 x 2.7)
P.E = 13.23 J
Therefore, the gravitational potential energy of the ball is 13.23 J.
Light from other stars take longer to reach the earth because they are farther than our sun.