Answer:
Explanation:
Initial moment of inertia of the earth I₁ = 2/5 MR² , M is mss of the earth and R is the radius . If ice melts , it forms an equivalent shell of mass 2.3 x 10¹⁹ Kg
Final moment of inertia I₂ = 2/5 M R² + 2/3 x 2.3 x 10¹⁹ x R²
For change in period of rotation we shall apply conservation of angular momentum law
I₁ ω₁ = I₂ ω₂ , ω₁ and ω₂ are angular velocities initially and finally .
I₁ / I₂ = ω₂ / ω₁
I₁ / I₂ = T₁ / T₂ , T₁ , T₂ are time period initially and finally .
T₂ / T₁ = I₂ / I₁
(2/5 M R² + 2/3 x 2.3 x 10¹⁹ x R²) / 2/5 MR²
1 + 5 / 3 x 2.3 x 10¹⁹ / M
= 1 + 5 / 3 x 2.3 x 10¹⁹ / 5.97 x 10²⁴
= 1 + .0000064
T₂ = 24 (1 + .0000064)
= 24 hours + .55 s
change in length of the day = .55 s .
Answer:
time rising = 34 / 9.8 = 3.47 sec
total time in air = 2 * 3.47 sec = 6.94 sec
(time rising must equal time falling)
R = 17 m/s * 6.94 s = 118 m
Can also use range formula
R = v^2 sin (2 theta) / g
tan theta = 34 / 17 = 2
theta = 63.4 deg
2 theta = 126.9 deg
sin 126.9 = .8
v^2 = 17^2 + 34^2 = 1445 m^2/s^2
R = 1445 * .8 / 9.8 = 118 m agreeing with answer found above
D will hit last because if air resistance is null then the only force enacting on the balls is the force of gravity. Force of Gravity has an acceleration of 9.81 ms^2 and so every ball had the same acceleration and ball D is the furthest away from the floor.
Answer:
The answer is: c.) Both students get the same time constant, since the time constant does not depend on the charge on the capacitor
Explanation:
Both students, because the time constant is not dependent on the capacitor charge. We can express the equation of the time constant as follows:
Time constant = RC
In this equation it is observed that the time constant is equal to the multiplication of the resistance (R) multiplied by the capacitance (C)